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Abstract

Acute lung injury (ALl) affects over 10% of patients hospitalised in critical care, with acute respiratory distress
syndrome (ARDS) being the most severe form of ALl and having a mortality rate in the region of 40%. There has
been slow but incremental progress in identification of biomarkers that contribute to the pathophysiology of ARDS,
have utility in diagnosis and monitoring, and that are potential therapeutic targets (Calfee CS, Delucchi K, Parsons
PE, Thompson BT, Ware LB, Matthay MA, Thompson T, Ware LB, Matthay MA, Lancet Respir Med 2014, 2:611--620).
However, a major issue is that ARDS is such a heterogeneous, multi-factorial, end-stage condition that the strategies
for “lumping and splitting” are critical (Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX, Am J Respir Crit
Care Med 2016, 194:147—-155). Nevertheless, sequencing of the human genome, the availability of improved
methods for analysis of transcription to mMRNA (gene expression), and development of sensitive immunoassays has
allowed the application of network biology to ARDS, with these biomarkers offering potential for personalised or
precision medicine (Sweeney TE, Khatri P, Toward precision medicine Crit Care Med; 2017 45:934-939).

Biomarker panels have potential applications in molecular phenotyping for identifying patients at risk of developing
ARDS, diagnosis of ARDS, risk stratification and monitoring. Two subphenotypes of ARDS have been identified on
the basis of blood biomarkers: hypo-inflammatory and hyper-inflammatory. The hyper-inflammatory subphenotype
is associated with shock, metabolic acidosis and worst clinical outcomes. Biomarkers of particular interest have
included interleukins (IL-6 and IL-8), interferon gamma (IFN-y), surfactant proteins (SPD and SPB), von Willebrand
factor antigen, angiopoietin 1/2 and plasminogen activator inhibitor-1 (PAI-1). In terms of gene expression (MRNA)
in blood there have been found to be increases in neutrophil-related genes in sepsis-induced and influenza-
induced ARDS, but whole blood expression does not give a robust diagnostic test for ARDS.

Despite improvements in management of ARDS on the critical care unit, this complex disease continues to be a
major life-threatening event. Clinical trials of B,-agonists, statins, surfactants and keratinocyte growth factor (KGF)
have been disappointing. In addition, monoclonal antibodies (anti-TNF) and TNFR fusion protein have also been
unconvincing. However, there have been major advances in methods of mechanical ventilation, a neuromuscular
blocker (cisatracurium besilate) has shown some benefit, and stem cell therapy is being developed. In the future, by
understanding the role of biomarkers in the pathophysiology of ARDS and lung injury, it is hoped that this will
provide rational therapeutic targets and ultimately improve clinical care (Seymour CW, Gomez H, Chang CH,
Clermont G, Kellum JA, Kennedy J, Yende S, Angus DC, Crit Care 2017, 21:257).
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Introduction

Definition of ARDS

The definition and the criteria for the diagnosis of ARDS
have changed many times during the years. The first de-
scription of an ARDS-like syndrome appeared in 1967
grouping together patients with acute respiratory failure as-
sociated with dyspnea, tachypnea, cyanosis that is refractory
to oxygen therapy, decreased lung compliance, and diffuse
alveolar infiltrates evident on the chest radiograph [1].

The 1994 American—European Consensus Conference
(AECC) defined ARDS according to the presence of all
the following clinical criteria: a) recent onset of symp-
toms after a known risk factor, b) severe hypoxemia de-
fined by a PaO,/FiO, ratio less than 200 mmHg, c)
bilateral infiltrates on chest radiograph, d) absence of
cardiogenic pulmonary edema [2]. The AECC coined the
term Acute Lung Injury (ALI) to facilitate diagnosing pa-
tients earlier in the course of their ARDS and identify
patients who have a milder form of acute hypoxemic re-
spiratory failure than ARDS.

The Berlin Clinical Classification of ARDS was estab-
lished to classify patients according to their disease. The
current working definition of proposed three mutually
exclusive categories (mild, moderate, severe) of ARDS
severity (Table 1). These are based on degree of hypox-
emia [3]. In the revised Berlin definition, the term ARDS
was redefined as a broader concept including a milder
condition of lung injury; therefore, it became equivalent
to acute lung injury (ALI), which was the previous
AECC definition.

Epidemiology of ARDS

The acute respiratory distress syndrome (ARDS) repre-
sents a major cause of death in the critical care units
worldwide, with mortality rates around 40% [4] even
with the latest advances in its treatment [4, 5]. In recent
prospective study carried out in 459 ICUs in 50 coun-
tries in 5 continents, ARDS appeared to be underrecog-
nized and undertreated, with some geographic variation
and with confirmed high mortality [6]. In this multicen-
ter study ARDS has shown to represent 10.4% of total
ICU admission and 23.4% of all patients requiring mech-
anical ventilation. The prevalence of mild ARDS was

Table 1 Current definition of ARDS: the Berlin definition [3]
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30.0%, moderate, 46.6% and severe, 23.4%. Overall, un-
adjusted ICU and hospital mortality was 35.3 and 40.0%,
respectively and both augmented with increased ARDS
severity [6].

Aetiology of ARDS

In the Berlin definition ARDS has been defined by ex-
posure to a known clinical insult or worsening of re-
spiratory symptoms within 7 days. Although the exact
cause of ARDS is not always determinable, it is import-
ant to identify the risk factors associated. Generally, risk
factors are divided into direct and indirect causes of lung
injury (Table 2). The most common causes of indirect
ARDS are pneumonia and sepsis. However, these are not
the only drivers that lead to the development of ARDS
but other unknown factors play a role in the pathogen-
esis. Among them genetic factors may be involved al-
though no single gene polymorphism has shown
significant predisposition to ARDS. Moreover, virulence
factors and environmental ones (such as exposition to
injurious mechanical ventilation) may contribute to the
progression of the disease to ARDS [7, 8]. An ideal bio-
marker should provide information for identification of
patients at risk for ARDS and with different ARDS phe-
notypes during the progression of lung injury. Indeed
several candidate biomarkers for ARDS that have been
investigated in blood, pulmonary edema fluid, and ex-
haled air, but currently they are not reliable enough for
clinical use. A combination of biomarkers could help
distinguish patients with direct lung injury from those
with an indirect mechanism of lung injury, thus helping
in the diagnosis and identification of patients that may
benefit from different therapeutic strategies (Table 3).

Pathology
The pathophysiology of ALI/ARDS is complex and re-
mains incompletely understood.

Interestingly all the above definitions of ARDS do not
include the presence of an inflammatory process of the
lower airways. Despite this, ARDS is currently consid-
ered to represent a stereotypic response to many differ-
ent injuries all evolving through a number of different

Timing

Within 1 week of a known clinical insult or new or worsening respiratory symptoms

Chest imaging (chest radiograph or computed tomography scan)

Origin of edema

Bilateral opacities; not fully explained by effusions, lobar/lung collapse, or nodules

Respiratory failure not fully explained by cardiac failure or fluid overload

Need objective assessment (e.g., echocardiography) to exclude hydrostatic
edema if no risk factor present

Oxygenation Mild

Moderate

Severe

200 mmHg < PaO,/FIO, <300 mmHg with PEEP or CPAP =5 cmH,0O
100 mmHg < PaO,/FIO, < 200 mmHg with PEEP 25 cmH,0
Pa0,/FIO, <100 mmHg with PEEP 25 cmH,0
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Table 2 Risk factors commonly associated with ARDS

Direct lung injury Indirect lung injury

Pneumonia Sepsis

Aspiration of gastric contents Multiple trauma
Pulmonary contusion Cardiopulmonary bypass
Near drowning Acute pancreatitis
Inhalation injury Drug overdose

Reperfusion pulmonary edema Transfusion of blood products

phases: alveolar and capillary damage to lung resolution
with or without a fibro-proliferative phase.

Furthermore, ARDS is not characterized by a specific
clinic-pathological disease but includes a heterogeneous
list of clinic-pathological entities, usually showing diffuse
alveolar damage (DAD) with severe widespread damage
to the alveolo-capillary unit [9].

Early and late phases of lung injury

Pathologically and clinically, ARDS can be divided into
early and late phases of lung injury, corresponding to ex-
udative and fibroproliferative phases [10] (Fig. 1). This
involves endothelial and epithelial damage, the inflam-
matory cascade, and increased vascular permeability.
There are associated alterations in lung matrix, activa-
tion of coagulation and fibrosis pathways, with cell pro-
liferation and apoptosis.

A. Early phase: In the early phase (first few hours or
days), there is widespread neutrophilic alveolitis

Table 3 Biomarkers of ARDS [13, 15, 92, 93]

Pathway Biomarkers
Epithelial RAGE
SP-D
KL-6
ccie
KGF
Endothelial Ang-1/2
VWF
VEGF
Inflammatory Pro-inflammatory IL-18
IL-6
TNFa
IL-8
IL-18
Anti-inflammatory IL-TRA
STNF-RI/II
IL-10
Coagulation and fibrinolysis PAI-1
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with disruption of the alveolar epithelial and
endothelial barriers, while leads to the formation of
protein-rich edema in the interstitium and alveolar
spaces [8]. Microscopically, lungs in the early stages
show diffuse alveolar damage (DAD) with alveolar
flooding by proteinaceous fluid, neutrophil influx into
the alveolar space, loss of alveolar epithelial cells, de-
position of hyaline membranes on the denuded base-
ment membrane and formation of microthrombi
[11]. Inflammatory cell infiltration of the lung inter-
stitium may also be seen. The alveolar flooding occurs
as a result of injury to the alveolar-capillary barrier
and is a major determinant of the hypoxemia and al-
tered lung mechanics that characterize early ALI/
ARDS. Injury to the alveolar epithelium is a promin-
ent feature histologically with loss of alveolar epithe-
lial barrier integrity and extensive necrosis of alveolar
epithelial type I cells. Endothelial injury allows leak-
age of plasma from the capillaries into the intersti-
tium and airspace. The mechanism by which the
microvascular endothelium and alveolar epithelium
are injured are probably multiple and may vary de-
pending on the inciting event.

B. Late Phase: Disordered healing and proliferation of
fibrous tissue dominate the late phase of ARDS. The
scenario evolves to a fibro-proliferative process that
fills the airspaces with granulation tissue containing
proliferating alveolar type II cells, as well as new
blood vessels and extracellular matrix rich in collagen
and fibrin. Type II alveolar cell, fibroblast and myofi-
broblasts proliferate in this phase, which can occur as
early as 7 to 10 days after initial injury. This stage has
traditionally been described as being followed by a fi-
brotic phase, essentially emphasizing the appearance
of pulmonary fibrosis in a subset of patients with irre-
versible lung fibrosis [11]. Recent observations have
suggested that the areas of fibrosis may develop
sooner than previously appreciated. Elevated levels of
N-terminal procollagen peptide III, thought to repre-
sent collagen synthesis, can be detected in bronchoal-
veolar lavage fluid of patients with ARDS as early as
24h into the course of the illness [12]. This observa-
tion have led some investigators to hypothesize that
fibroproliferation may be initiated simultaneously
with inflammatory lung injury [12].

Biomarkers

In ARDS biomarkers have promise in diagnosis and
stratification, assessment of prognosis and to evaluate
response to therapy [13, 14] (Fig. 2). Sequencing of the
human genome, the availability of improved methods for
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Fig. 1 Immunopathology and biomarkers of ARDS. Diagram illustrate the key cells and molecules involved in the pathophysiology of ARDS
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e Surfactant proteins (SP) are generally increased in
ARDS, and SP-B can cross damaged alveolocapillary
membranes [16, 17]. Blood SP-D levels been shown
to correlate with ARDS mortality [18, 19].

e KL-6 levels have been correlated with ARDS
mortality as opposed to ARDS development [20]. In
2014 a meta-analysis of plasma biomarkers for
ARDS analysed 54 studies found KL-6, lactate de-
hydrogenase, SRAGE, and von Willebrand factor
were associated with ARDS diagnosis in at risk pop-
ulations [21].

e VEGF and keratinocyte growth factor were shown
to correlate with severity of illness and reflect
patient outcome [22, 23].

e RAGE is highly expressed in lung epithelium [24],
and especially expressed on alveolar type 1 epithelial
cells [25]. The use as a marker has been
questionable but some studies have shown higher
levels of RAGE were associated with impaired
alveolar fluid clearance in patients with ARDS hence
the severity of lung epithelial injury [26]. RAGE
plasma levels in patients with severe ARDS
correlated with mortality in patients ventilated with
high tidal volumes [27]. In a meta-analysis SRAGE
was found to be useful in ARDS diagnosis in a high
risk population, but not associated with mortality
[21], although other studies have shown no associ-
ation [28, 29].

Endothelial markers

Endothelial markers include angiopoietin-2 (Ang-2) and
markers of endothelial dysfunction [30]. Elevated levels
of Ang-2 in both ARDS and at risk patients are predict-
ive of mortality [29, 31, 32] and there is a correlation be-
tween Ang-2 levels and ARDS development in trauma
patients [33]. In addition, for VWF here seems to be a
correlation with mortality in ARDS [18, 34, 35].

Inflammatory cytokines

Levels of the inflammatory cytokines IL-1p and TNF-a
are more useful as markers of sepsis severity rather than
for ARDS [36]. Other pro-inflammatory cytokines in-
clude IL-8, which has been shown in predicting the out-
come of ARDS [18, 34]. IL-18 has been noted to be
increased in patients with ARDS, and been associated
with mortality [37]. An external validation of biomarkers
and a clinical prediction model for hospital mortality in
ARDS included SP-D and IL8 in various clinical settings,
and suggested that these biomarkers may be useful in
risk assessment for clinical trial enrolment [38].

Coagulation and fibrinolysis
Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor
of fibrinolysis. Some studies have shown an increase in
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serum levels in patient with ARDS [18, 39, 40], and there
is reported correlation with overall mortality in critically
ill patients [41].

Combinations of biomarkers

Several studies have looked into markers of epithelial
and endothelial injury, coagulation and inflammation
and have shown a combination of clinical predictors
with combination of biomarkers were better at predict-
ing mortality compared to either of the clinical or bio-
markers alone [18, 33, 34, 42]. A panel of biomarkers
was superior to clinical risk factors alone in predicting
mortality in ARDS [18], as well as being useful for the
diagnosis of ARDS [27]. A combination of RAGE and
Ang-2 were superior to clinical diagnosis for the diagno-
sis of ARDS in severe trauma [43]. In severe sepsis a
panel which included RAGE, SPD, Club Cell Protein 16
was useful in diagnosis of ARDS [42].

Blood biomarkers of ARDS: Calfee group, SF
In recent years the clinical research group of Carolyn
Calfee and colleagues have performed clinical studies
assessing panels of blood biomarkers in ARDS. In the era
of precision medicine and personalization, the Calfee
group studies proceed on a more detailed characterization
of the disease that may vary on individual level. They de-
scribe different ARDS subphenotypes and work on bio-
marker panels that may help clinicians to select patients
who may benefit from different therapeutic strategies.
Direct  (epithelial)/Indirect  (endothelial)  Groups:
Molecular phenotyping was carried out to demonstrate
2 groups of ARDS patients: with direct (lung epithelial)
damage and indirect (vascular endothelium) damage.
Direct lung injury mainly caused by pneumonia and as-
piration is characterised by more severe lung epithelial
injury and less severe endothelial injury. For indirect
lung injury, the emphasis is on endothelial or vascular
injury, as opposed to epithelial damage. In direct ARDS,
there are higher levels of SP-D, a marker of lung epithe-
lial damage and there were lower levels of Ang-2, a
marker of endothelial injury compared to indirect ARDS.
There is evidence that lower levels of von Willebrand
factor (VWF) antigen, IL6 and IL8 are present in direct
lung injury [44]. With these distinct molecular pheno-
types, the epithelium could be a treatment target with
keratinocyte growth factor for direct ARDS, whereas the
endothelium could be targeted in indirect ARDS using
statins and recombinant angiopoietin 1 [44].
Hypo/Hyper Inflammatory Groups: Unbiased latent
class analysis of clinical and biomarkers characteristics
of ARDS patients demonstrated hypo-inflammatory and
hyper-inflammatory groups in ARDS. These have differ-
ent clinical and biological characteristics, and different
responses to therapy. In the hyperinflammatory group
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(one third of ARDS subjects), there is a higher plasma
level of inflammatory biomarkers, higher vasopressor use
and lower serum bicarbonate, and higher prevalence of
sepsis compared to the hypo-inflammatory group. The
hyper-inflammatory group had a higher mortality and
fewer ventilator-free and organ failure-free days. Eight
plasma biomarkers were included: surfactant protein-D
(SP-D), von Willebrand factor antigen, soluble intercellular
adhesion molecule 1 (SICAM-1), IL- 6 and IL-8, soluble
tumor necrosis factor receptor 1 (TNFR 1), plasminogen
activator inhibitor-1 (PAI-1) and protein C [13]. More re-
cently, it has been shown that a selection of 4 biomarkers:
IL-6, interferon gamma (IFN-y), angiopoietin 1/2 and
PAI-1 could be used to cluster ARDS into two biological
phenotypes with different mortality rates [45]. The stability
of ARDS phenotypes has been shown over the first 3 days
of enrolment in 2 clinical trials [46], and they respond dif-
ferently to fluid management strategies [47].

Septic shock biomarkers: ProCESS study

A large biomarker study of 1341 individuals enrolled in
the Protocolized Care of Early Septic Shock (ProCESS)
trial found that proteins associated with endothelial cell
permeability and hemostasis were associated with in-
creased mortality [48]. Angiopoietin-2, soluble fms-like
tyrosine kinase 1 (SFLT-1), soluble vascular endothelial
growth factor receptor (s-VEGFR), thrombomodulin
(TM) and vWF were all higher in patients that died. In a
sub-study of 628 patients enrolled in ProCESS, higher
serum biomarkers were found in patients with adverse
outcomes: including biomarkers of inflammation (IL-6,
TNE, IL-10), coagulation (thrombin-antithrombin com-
plex, D-dimer), oxidative stress (urine isoprostane) and
tissue hypoxia (lactate) [49].

Influenza ARDS: MOSAIC

The HIN1 influenza A virus is known to be associated
to high morbidity and mortality. The infection can cause
a severe acute respiratory failure or ARDS with multior-
gan failure. The HIN1 pandemic of 2009 saw many
cases of severe ARDS with refractory hypoxemia that
needed the veno-venous extracorporeal membrane oxy-
genation as a rescue therapy [50, 51]. Recently, the
interferon-inducible transmembrane (IFITM3) protein
has shown in models to have a pivotal role in defending
the host from pathological virus such as influenza A. In
human individuals hospitalized for influenza HIN1/2009
virus it has been found elevated expression of a minor
IFITM3 allele and in vitro minor CC genotype IFITM3
has reduced influenza virus restriction [52].

Metabolomics
The analysis of lower molecular weight cell metabolites
is generally performed using nuclear magnetic resonance
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(NMR) and mass spectrometry (MS). Metabolic changes
are highly dynamic and offer insight into chemical pro-
cesses occurring at any given time [53]. This makes
metabolomics a useful way to detect physiological
changes in real time allowing monitoring of potential
environmental insults, disease progression and drug re-
sponses. These metabolite changes occur in relation to
alterations in the gene and protein activity that are asso-
ciated with the disease [54]. In a single study there were
4513 metabolites identified in human blood but this is
an underestimate based on the individual analytical
method [55]. Although many studies have been per-
formed to assess the application of metabolomics to lung
disease, progress has been slow [54].

There have been several metabolomics studies in ex-
perimental models looking at a variety of samples from
exhaled breath, serum, bronchial alveolar lavage and
lung tissue which find that lung injury results in a per-
turbation of energy and oxidative stress metabolism [54].
In contrast, there have been few clinical metabolomics
studies in ARDS. Bos et al. looked into exhaled breath
and analysing volatile organic compounds (VOCs) using
gas-chromatography and mass spectrometry (GC-MS).
Most of the candidate markers are linked to lipid peroxi-
dation. Only octane — one of the end products of lipid
peroxidation — has been validated in a temporal external
validation cohort and is at the moment is most acknowl-
edged breath biomarker for ARDS [56]. Acetaldehyde
and 3-methylheptane have also been reported as predict-
ive of ARDS and diagnostic accuracy was improved with
the Lung Injury Prediction Score (LIPS) [56].

Metabolomic analysis of bronchoalveolar lavage (BAL)
has been carried out using untargeted liquid chromatog-
raphy mass spectrometry (LC-MS). Metabolites involved
with energy metabolism such as lactate, citrate, creatine
and creatinine have been shown to be associated to ARDS,
and have previously been shown to be increased in plasma
[57]. In addition, several guanosine network metabolites
have been found to be increased in ARDS BAL fluid [54].

Langley et al. looked at extensive targeted metabolo-
mics profiling of > 300 metabolites in two adult popula-
tions at high risk of death; patients in Community
Acquired Pneumonia and Sepsis Outcome Diagnostics
(CAPSOD) and patients in the Registry of Critical Illness
(RoCI) [58]. Despite the phenotypic differences, most
metabolites associated with mortality were upregulated.

The application of NMR-based metabolomic analysis
on urine sample of pneumonia patients demonstrated
the existence of different metabolomic profiles specific
for bacterial infections, particularly for Streptococcus
pneumoniae and Staphylococcus aureus. The results
highlight the potential of metabolomics for the diagnosis
and monitoring of the antibiotic therapy of pneumonia
both in community- and hospital-acquired ones [59].



Spadaro et al. Journal of Inflammation (2019) 16:1

In ARDS patients higher urine H,O, levels were asso-
ciated with worse clinical outcomes, perhaps reflecting
greater oxidative injury in these patients [60]; while
higher urine NO levels were associated with increased
survival [61]. Urinary indices of glycosaminoglycan
(GAG) fragmentation, a product of degradation of the
endothelial glycocalyx, individuated by mass spectrom-
etry on urine samples in patients with septic shock or
ARDS may predict acute kidney injury and in-hospital
mortality [62].

Transcriptomics — Gene expression mRNA
A recent multicohort analysis of whole blood gene ex-
pression data for ARDS by Sweeney et al. looked into 3
adult cohorts with sepsis, one paediatric cohort with
acute respiratory failure and 2 datasets form adults with
trauma and burns for a total of 148 cases of ARDS and
268 cases of critically ill controls. 30 genes were associ-
ated with ARDS — many of which have previously been
associated with sepsis but with adjustment for the clin-
ical severity score — none of these genes remained sig-
nificant indicating that the gene expression is one of
acute inflammation as opposed to lung injury [63].
Sweeney also looked separately into sepsis subtypes
using data pooled from 14 bacterial sepsis transcripto-
mics (n =700). Using cluster analysis Sweeney showed
that there are 3 subtypes termed ‘inflammopathic, adap-
tive and coagulopathic’. Adaptive subtypes are associated
with lower clinical severity and lower mortality rate and
the coagulopathic subtypes are associated with higher
mortality and clinical coagulopathy [64].

MicroRNA (MiRNA)

MiIRNA is a novel pathway for non-coding RNA
molecules that regulate gene expression at the
post-transcriptional level. It plays an important role in
inflammation or apoptosis which commonly manifests
in ARDS [65]. They are good candidates as disease bio-
markers due to numerous factors. They can be identified
in various body fluids, resistant to extreme environmen-
tal conditions, their expression changes in various dis-
ease states and change in early stages of gene expression.
MiRNA can be readily measured and hence are potential
therapeutic targets as each miRNA regulates the expres-
sion of many genes [66]. Most of the studies to date have
been on animal models but one of the first miRNA stud-
ied in patients was miRNA-150 which has been shown
to be in lower concentrations in the septic cohort; al-
though statistical significance was not achieved [67].
Plasma levels of miRNA — 146a and miRNA155 signifi-
cantly increased in patients with severe sepsis and sepsis
induced ALI compared to control [68] and may be help-
ful in predicting mortality. A more recent study by Zhu
et al. examined ARDS patients’ vs critically ill at-risk
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controls and identified whole blood miRNA markers in
ARDS including miR-181a, miR92a. MiR-424 was shown
to be a protective biomarker. Zhu concluded stating in
addition to the miRNA, addition of the LIPS can im-
prove the risk estimate of ARDS [69].

Genetics (DNA)

Genomics in ARDS has offered relatively modest advances
in understating ARDS [53]. Candidate gene studies have
identified variants in more than 40 candidate genes associ-
ated with the development (or outcome) of ARDS [70].
This included genes for angiotensin-converting enzyme
(ACE), IL-10, TNF and vascular endothelial growth factor
(VEGEF). In the first human genome-wide association
study (GWAS) for ARDS susceptibility, Christie et al.
identified a novel locus PPFIA1 as a replicable risk factor
for ALI following major trauma, but no polymorphism
had genome wide significance [71].

Therapies
Current therapies for ARDS are summarized in Table 4.
The reader is directed to excellent recent reviews that
refer to modern treatment for ARDS in detail [7, 72-74].
Most advances have been through changes in mechanical
ventilation methods, culminating in a 2017 International
Clinical Practice Guideline for mechanical ventilation on
adults with ARDS [75]. The guidelines address 6 interven-
tions: low tidal volume and inspiratory pressure ventila-
tion, prone positioning, high-frequency oscillatory
ventilation, higher versus lower positive end-expiratory
pressure, lung recruitment manoeuvres, and extracorpor-
eal membrane oxygenation. Otherwise treatment is sup-
portive and palliative, with no current disease-modifying
therapies available. Early goal-directed therapy (EGDT) in-
volving a 6 h resuscitation protocol of fluids, vasopressors,
inotropes and red cell transfusion for septic shock did not
result in better outcomes than usual care [76].

Glucocorticoids may improve oxygenation and airway
pressures in established ARDS, but have failed to
demonstrate a role in preventive therapy. In patients
with pneumonia, steroids may improve radiological
appearances, but again does not improve mortality [77].
Trials conducted on established ARDS investigated dif-
ferent doses and duration of treatment, preventing
generalization of the results, however analysis suggest
that if steroids are started 14 days or more after the
diagnosis of ARDS, they can be harmful. The combin-
ation of inhaled [,-agonists and glucocorticoid admin-
istered early in patients at risk of ARDS has recently
shown to prevent development of ARDS and improve
oxygenation but its effect on mortality has not been
demonstrated [78].

Pre-hospital aspirin has been shown to reduce the in-
cidence of ARDS, however results of ongoing trials
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Table 4 Summary of therapies for acute respiratory distress syndrome

Supportive therapy

Comment

Lung protective ventilation with low tidal volume (4-8 ml/kg predicted
body weight) and low inspiratory pressures (plateau pressure
<30 cmH,0)

Higher level of PEEP® in patients with moderate or severe ARDS

Lung recruitment maneuvers in patients with moderate or severe ARDS
Prone positioning for more than 12 h/die in patients with severe ARDS
HFOV

ECMO

Conservative fluid management strategy

Pharmacological therapy

Glucocorticoids

Inhaled nitric oxide (NO)

Neuromuscolar blockade

Mesenchimal stem cells

Strong recommendation [75]

Conditional recommendation [75]

Conditional recommendation [75]

Strong recommendation [75]

Strong recommendation against the routine use of HFOV [75]

Rescue therapy for refractory hypoxemia in severe ARDS. No
recommendation is made, additional studies are needed [75].

It shortened the duration of assisted ventilation in large randomized
trial [94, 95]

Inconclusive results on doses and duration of treatment. May provide
some benefit on oxygenation, reduce inflammatory process and
ventilation days. They are harmful if started 14 days after ARDS
diagnosis [96].

Improves transiently oxygenation. Does not affect mortality.
Higher grade of AKI [80].

Improve outcomes in patients with moderate to-severe ARDS, ensures
patient-ventilator synchrony and reduces the risk of VILI [81].

Higher risk of diaphragm atrophy and ICU acquired weakness.
Ongoing trial (NCT02509078).

Phase 2a clinical trials to establish safety in ARDS are in progress
and two phase 1 trials did not report any serious adverse events [81].

SPEEP positive end-expiratory pressure, ARDS acute respiratory distress syndrome, HFOV high frequency oscillatory ventilation, ECMO extra-corporeal membrane
oxygenation, AKl acute kidney injury, VIL/ ventilator-induced lung injury, ICU intensive care unit

investigating its preventive role are inconclusive and
more data are needed [79]. Inhaled NO transiently im-
proves oxygenation and long term lung function in pa-
tients who survive, but does not affect mortality and
may cause renal impairment, hence it is not recom-
mended [80]. A neuromuscular blocker, cisatracurium
besilate has shown some benefit when used for early
ARDS [81]. Statins [82], beta-agonists [83], non-steroidal
anti-inflammatory drugs (NSAIDs), and an antioxidant
(procysteine  [L-2-oxo-thiazolidie-4-carboxylic  acid])
have failed to show benefit for ARDS. Surfactant re-
placement [84], neutrophil elastase inhibitors and antic-
oagulation have also all failed in clinical trials.

Biologics directed against TNF have been highly suc-
cessful in rheumatoid arthritis, but no benefit has been
seen for the treatment of inflammatory lung diseases, in-
cluding ARDS [85, 86]. With a view to lung regener-
ation, cellular therapies and intravenous mesenchymal
stem cell therapy are in development for ARDS [87]
[88]. There is significant interest in the targeted use of
anti-inflammatory therapies in patients with ARDS de-
fined by blood biomarker levels [89]. It is logical to study
effects of anti-inflammatory agents in patients with
hyper-inflammatory ARDS, and to tailor use of specific
anti-inflammatory drugs to ARDS patients with particu-
lar biomarker profiles [90].

Despite intense investigation, no specific pharmaco-
logical treatment for ARDS has been shown to affect the
mortality, even though preclinical trials in animal
models have looked promising. Targeting a single patho-
genetic pathway is not unlikely to be advantageous due
to the complexity of the mechanisms involved.

However, the characterization of the ARDS subpheno-
type by blood biomarkers may help clinician to select
patients who may benefit from specific therapeutic strat-
egy and ultimately tailor the treatment on our single pa-
tient. In fact, it has been proved that a high PEEP
strategy in ARDS patients affected major outcome only
in the hyperinflammatory subphenotype [91]. Moreover
the restrictive fluid strategy was beneficial in the same
selected ARDS patients [47]. More studies are needed to
further explore the benefits of different therapies based
on particular ARDS biomarker profile.

Conclusions

ARDS is a syndrome still associated with high mortality.
The main treatment in order to reduce mortality relies
on the correct strategic use of mechanical ventilation
aimed to protect the lung by avoiding the
pro-inflammatory mechanisms triggered by mechanical
ventilation. The latter, however, does not represent the
real treatment of ARDS since it is aimed to preserve the
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respiratory exchange, preserving life and allowing physi-
cians to wait for the resolution of the underlying disease.
To further reduce mortality, the therapy of ARDS should
be based on the inflammatory mechanisms responsible
of the lung injury, possibly taking into account the gen-
etic difference among patients and the origin of ARDS,
such as the primary or the secondary ARDS.
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