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Abstract

Background: It has recently been found that both nuclear epithelial-expressed histone deacetylases Hdac1 and
Hdac2 are important to insure intestinal homeostasis and control the mucosal inflammatory response in vivo. In

addition, HDAC inhibitors modulate epithelial cell inflammatory responses in cancer cells. However, little is known
of the specific role of different HDAC, notably Hdac1, in the regulation of inflammatory gene expression in intestinal
epithelial cells (IEQ).

Methods: We investigated the role of Hdac1 in non-transformed IEC-6 rat cells infected with lentiviral vectors
expressing specific Hdac1 shRNAs, to suppress Hdac1 expression. Proliferation was assessed by cell counting.
Deacetylase activity was measured with a colorimetric HDAC assay. Cells were treated with IL-1( and/or the JQT1
bromodomain acetyl-binding inhibitor. Nuclear protein levels of Hdac1, Hdac2, phosphorylated or unphosphorylated
NF-kB p65 or C/EBPB, and NF-kB p50 and actin were determined by Western blot. Chemokine and acute phase protein
expression was assessed by semi-quantitative RT-PCR analysis. Secreted cytokine and chemokine levels were assessed
with a protein array. Chromatin immunoprecipitation experiments were done to assess RNA polymerase Il recruitment.

Results: Reduced Hdac1 protein levels led to Hdac2 protein increases and decreased cell proliferation. Hdac1

depletion prolonged nuclear IL-1B-induced phosphorylation of NF-kB p65 protein on Ser536 as opposed to total pé5,
and of C/EBPB on Ser105. In addition, semi-quantitative RT-PCR analysis revealed three patterns of expression caused
by Hdac1 depletion, namely increased basal and IL-13-stimulated levels (Hp, Kng1), increased IL-13-stimulated levels
(Cxcl2) and decreased basal levels with normal IL-13 induction levels (Ccl2, Ccl5, Cxcl1, C3). Secreted cytokine and
chemokine measurements confirmed that Hdac1 played roles both as an IL-1{3 signalling repressor and activator.
Hdac1 depletion did not alter the JQ1 dependent inhibition of basal and IL-13-induced inflammatory gene expression.
Hdac1 depletion led to decreased basal levels of RNA polymerase Il enrichment on the Ccl2 promoter, as opposed to the
Gapdh promoter, correlating with decreased Ccl2 basal mRNA expression.

Conclusions: Hdac1 is a major nuclear HDAC controlling IL-13-dependent inflammatory response in IEC, notably

by regulating gene-specific transcriptional responses. Hdac1 may be important in restricting basal and
inflammatory-induced gene levels to defined ranges of expression.
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Background

The intestinal epithelium plays important roles as a phys-
ical and biochemical sensor of the luminal environment
[1]. Indeed, intestinal epithelial cells (IEC) regulate gut
homeostasis by sensing luminal bacterial products or by
responding to inflammatory signals emanating from the
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mucosal immune system [2,3]. In turn, these inflammatory
signals regulate an IEC-specific inflammatory response,
characterized by the expression of various cytokines, che-
mokines and acute phase proteins [4]. In recent years, epi-
genetic modifications, which include DNA methylation,
histone methylation and acetylation among others, have
been shown to act as receivers and transmitters of en-
vironmental changes, leading to variations in gene expres-
sion. Indeed, it has been suggested that many inflammatory
diseases, including inflammatory bowel diseases, are
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affected by epigenetic modifications [5,6]. One important
modification, namely lysine acetylation, is regulated by his-
tone acetyltransferases and by histone deacetylases (HDAC),
which respectively add or remove the acetyl group on his-
tones as well as non-histone proteins [7]. Histone acetylation
plays a dual role, either by reducing histone-DNA interac-
tions, thereby creating an open chromatin configuration, or
by acting as an anchor recognized by bromodomain-
containing chromatin modifiers [8]. Some of these re-
cruited proteins, such as Brd family members, play import-
ant roles in the regulation of transcriptional elongation as
well as inflammation. HDAC-dependent regulation of pro-
tein acetylation levels leads to cell- and gene-specific tran-
scriptional repression or activation [8].

Of the eighteen HDAC, class I Hdacl gains access to
chromatin as a homodimer or heterodimer with Hdac2,
in Sin3, CoREST and NuRD multiprotein complexes
[9,10]. Hdacl is considered as a positive regulator of cell
proliferation as Hdacl depletion in mice results in growth
deficiencies, correlating with increased expression of the
p21 cyclin-dependent inhibitor [11,12]. In contrast to sin-
gle gene deletion, tissue-specific dual deletion of Hdacl
and Hdac2 leads to homeostatic phenotypes, such as epi-
dermal differentiation defects when deleted in epidermal
cells [13], and intestinal homeostatic perturbations when
deleted in intestinal epithelial cells [14]. Treating colon
cancer cell lines with HDAC inhibitors or reducing Hdac1
expression suppresses colon cancer cell proliferation [15],
and alters inflammatory signalling [16]. Hdacl is also con-
sidered as a negative regulator of transcription factors in-
volved in inflammatory responses. For example, Hdacl
deacetylates the p65 NF-kB subunit, leading to reduced
transcriptional activity during inflammatory responses
[17-19]. Both phosphorylation and acetylation modifica-
tions interact to insure full NF-kB transcriptional activity
[18,20,21]. Likewise, C/EBPJ acetylation leads to positive
or negative interactions with co-regulators, including
HDAC [22].

HDAC inhibitors are being considered as pharmaco-
logical agents to modulate inflammatory responses. How-
ever, many studies have revealed opposite effects of HDAC
inhibitors as suppressor or stimulator of inflammatory re-
sponses and gene expression [23]. These differences may
result from the use of different cell lines or mouse models,
suggesting cell-specific effects, or of HDAC inhibitors with
different selectivity to the various HDAC isoforms, sug-
gesting target-specific effects. As more specific HDAC in-
hibitors are being generated, it is thus of importance to
assess the role of specific HDAC in distinct cell types crit-
ical to the regulation of inflammation, including IEC.

Little is known of the role of specific HDAC in the con-
trol of IEC inflammatory responses. In order to under-
stand the role of Hdacl in the IEC inflammatory response,
we have used the non-transformed intestinal epithelial cell
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line IEC-6 to avoid the increased sensitivity to HDAC in-
hibition found in cancer cells. We had previously observed
that Hdacl1 silencing increased both basal and IL-1f stim-
ulated mRNA expression of the acute phase protein gene
haptoglobin [24]. We show here that Hdacl regulates in-
flammatory gene expression in a gene-specific manner,
and may display both repressive as well as activating ac-
tions. Hdacl-dependent regulation of IL-13-mediated IEC
inflammatory response may depend, in part, on the dur-
ation of the inflammatory signals, through prolonged
nuclear maintenance of phosphorylated NF-kB p65 and
C/EBPP. In addition, Hdacl may be implicated in the
maintenance of chromatin stability and of proper expres-
sion ranges in response to inflammatory signals, for a sub-
set of chemokine genes.

Methods

Cell culture

The 18- to 24-day-old rat small intestinal epithelial non-
transformed cell line IEC-6 exhibits an undifferentiated
small intestinal crypt cell phenotype and a normal karyo-
type (CRL-1592, ATCC, Manassas, VA) [25]. Confluent
cells, grown in Dulbecco’s modified Eagle medium
(DMEM) with 5% fetal bovine serum (FBS), were induced
with or without 10 ng/ml of recombinant human IL-1(
(Bioshop Canada, Burlington, ON, Canada) and 1 uM of
the JQ1 bromodomain acetyl-binding inhibitor (Cayman
Chemical Company, Ann Arbor, M1, USA) [26] for differ-
ent times.

Retroviral infection

80% confluent IEC-6 cells were infected with lentiviral
particles in medium supplemented with 4 pg/ml poly-
brene (Sigma-Aldrich Canada, Oakville, ON, Canada), as
we have done before [24,27]. Two days after infection,
transfected cells were selected with 2 pg/ml puromycin
(Sigma-Aldrich Canada, Oakville, ON). In addition to
the short hairpin RNA (shRNA) lentiviral control (SHC002V,
Sigma-Aldrich, St-Louis, MO, USA), the MISSION shRNA
lentiviral Hdacl (TRCN0000039402, Sigma-Aldrich,
St-Louis, MO, USA), whose sequence is conserved in
rat, mouse and human, was selected. Two clones of each
infection were expanded, and the shCtrl5, shCtrl9,
shHDAC1-18 and shHDAC1-21 cell lines were further
characterized for Hdacl and Hdac2 expression.

Cell growth measurement

Ten thousand shCtrl and shHDAC1 IEC-6 cells were
plated in each well. Cell growth was measured between
3 and 9 days with a hemocytometer to determine the
doubling time, as we have done before [28]. Each experi-
ment was done three times in triplicate. Results, repre-
sentative of two independent experiments, were analysed
by unpaired t tests and were considered statistically
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significant with p <0.05 (GraphPad Prism 5, GraphPad
Software, San Diego, CA, USA).

Deacetylase activity measurement

125 pg of nuclear proteins prepared either from com-
bined shCtrl IEC-6 cell populations or from combined
shHDAC1 IEC-6 cell populations, were incubated over-
night at 4°C, with protein A/G agarose complex (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) and anti-
bodies against Hdacl (New England Biolabs, Mississauga,
ON, Canada), Hdac2 (Abcam Inc., Cambridge, MA, USA)
or mSin3A (Santa Cruz Biotechnology, Santa Cruz,
CA, USA). Immune complexes centrifuged and washed
three times were used to measure deacetylase activity
with a colorimetric HDAC assay kit (Active Motif North
America, Carlsbad, CA, USA), following the manufac-
turer’s protocol. Optical density (OD) was determined on
a microplate reader at 405 nm, and deacetylase activity
was measured in pmoles/min/mg. Results are representa-
tive of two independent experiments.

Western blot analysis

Cell nuclei, prepared as described previously [28], were
resuspended in Laemmli buffer (62.5 mM Tris—HCI,
pH 6.9, 2% SDS, 1% pB-mercaptoethanol, 10% glycerol,
and 0.04% bromophenol blue) to obtain nuclear protein
extracts. To measure C/EBPf and NF-«xB p65 phosphor-
ylation, confluent shCtrl and shHDAC1 IEC-6 cells were
induced with 10 ng/ml of IL-1f for 10 min, 30 min, 1 h,
2 h and 4 h. Protein concentrations were measured by
the Bradford method (Bio-Rad Protein Assay kit, Bio-Rad
Laboratories, Mississauga, ON, Canada) or BCA method
(Pierce BCA Protein Assay Kit, Thermo Scientific,
Rockford, IL, USA). Proteins were loaded on a 10% SDS-
polyacrylamide gel and electroblotted on a PVDF mem-
brane (Roche Molecular Biochemicals, Laval, QC, Canada).
Membranes were incubated 1 h at room temperature, with
rabbit, mouse or goat polyclonal antibodies against Hdacl
and Hdac2 (Abcam Inc., Cambridge, MA, USA); phospho-
C/EBPf (Ser105), p65 and phospho-NF-kB p65 (Ser536)
(Cell Signalling Technology Inc., Danvers, MA, USA);
NF-«xB p50 (Assay Designs, Ann Arbor, MI, USA); C/EBP
and lamin B (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), as done before [24,27]. Immune complexes were re-
vealed with Amersham ECL™ Western blotting detection
reagents (GE Healthcare, Buckinghamshire, UK), according
to the manufacturer’s instructions. Results are representa-
tive of two to four independent experiments.

Semi-quantitative RT-PCR analysis

ShCtrl and shHDAC1 IEC-6 cells were induced with or
without 10 ng/ml IL-1f for 24 h, or pre-incubated with-
out or with JQ1 inhibitor for 4 h, before induction with
IL-1p for an additional 8 h. Total RNAs were isolated

Page 3 of 10

with the RNeasy Plus Mini kit (Qiagen, Mississauga,
ON, Canada). cDNAs were synthesized from 1 pg of
RNA, with oligo(dT;5) and Superscript II reverse tran-
scriptase (Invitrogen Life Technologies, Burlington, ON,
Canada), following the manufacturer’s protocol. cDNA
products were amplified with the Tag PCR Master Mix
Kit (Qiagen, Mississauga, ON, Canada) with PCR primers
designed against the corresponding Rattus norvegicus
c¢DNAs for Hdacl, Hdac2, Hdac3, Hdac8, as well as
selected IL-1p targets induced in IEC-6 cells, namely
haptoglobin (Hp), thiostatin (Kngl), Ccl2, Ccl5, Cxcll,
C3 and Cxcl2, and a non-induced target, namely Cxc/12.
Oligonucleotides were chosen in order to generate prod-
ucts of approximately 500 bp (Additional file 1, http://
bioinfo.ut.ee/primer3-0.4.0/primer3/). cDNA amplification
was performed by a first 94°C cycle for 5 min, followed by
28 cycles of 1 min at 94°C, 45 sec starting at 62°C and de-
creasing in increments of 0.3°C every cycle, 1 min at 72°C,
and a final cycle of 1 min at 94°C and 10 min at 72°C.
Relative quantification was estimated by glyceraldehyde-3
phosphate-dehydrogenase (Gapdh) amplification. Ampli-
fied PCR products were separated on a 1.4% agarose gel
and visualized by ethidium bromide staining. Results are
representative of two independent experiments.

Secreted cytokine and chemokine measurements

ShCtrl and shHDAC1 IEC-6 cells were cultured in a
300 pl volume in 24-well plates, with or without 10 ng/
ml of IL-1f for 24 h. Control and shHDAC cell superna-
tants were combined, and levels of 19 cytokines/chemo-
kines were measured with a RayBio Rat Cytokine Antibody
Array (AAR-CYT-G1-8, RayBiotech Inc., Norcross, GA,
USA), following the manufacturer’s protocol. Fluores-
cence intensity from two independent experiments was
measured with a ScanArray Express Microarray Scanner
(PerkinElmer Life and Analytical Sciences, Downers
Grove, IL). Proteins measured include Ccl2, Ccl20,
Cxcl2, Cxcl3, Cxcl5, Cx3cll, IL-1a, IL-1p3, IL-4, IL-6,
IL-10, B-NGECNTEF, GM-CSFE, VEGE, IFN-y, TNF-q,
Timpl and Lep.

Chromatin immunoprecipitation

Chromatin immunoprecipitation assays were done as de-
scribed by Svotelis et al. [29]. 107 shCtrl and shHDAC1
[EC-6 cells were recovered and crosslinked in medium con-
taining 1% formaldehyde for 10 min at room temperature,
before stopping the reaction with glycine. Chromatin from
lysed cells was sonicated with a BRANSON digital sonifier
(model S-250D, Branson Ultrasonics, Danbury, CT, USA),
for six cycles of 10 sec (shCtrl cells) and five cycles of
10 sec (shHDACT cells) at 15% sonication intensity, to ob-
tain DNA fragments between 300 and 500 bp. Chromatin
immunoprecipitation was performed with an antibody
against hypo- and hyperphosphorylated forms of RNA
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polymerase II (CTDH48) (EMD Millipore, Billerica, MA,
USA) and with protein A/G PLUS-agarose reagent pre-
blocked with BSA (Santa Cruz Biotechnology, Santa Cruz,
CA, USA). The input DNA, used to determine the amount
of DNA for each immunoprecipitation, represents one per-
cent of the lysate. Immunoprecipitated DNA was diluted
1:10 before semi-quantitative PCR amplification of 70 to
145 bp Ccl2 and Gapdh promoter and gene exon 2 down-
stream sequences (Additional file 2), for 30 or 32 cycles with
the touchdown amplification protocol used for chemokine
expression analysis. Results are representative of three inde-
pendent experiments.

Results

Hdac1 depletion reduces IEC-6 cell proliferation

To determine the role of the histone deacetylase Hdacl
in IEC, we infected IEC-6 cells with a retroviral con-
struct expressing a selected shRNA against Hdacl. We
chose IEC-6 cells because, while being immortal, these
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cells are not tumorigenic and display a normal karyotype.
Hdacl mRNA and protein expression was reduced in
both shHDACT1 cell lines, as determined respectively by
semi-quantitative RT-PCR (Figure 1A) and Western
blotting (Figure 1B). mRNA levels of other class I
HDACs, namely Hdac2, Hdac3 and Hdac8, were not
significantly altered (Figure 1A). However, while Hdac2
mRNA levels were not affected, Hdac2 protein levels
were increased (Figure 1B). This post-transcriptional
increase in Hdac2 protein levels after Hdacl depletion
was also observed in other cell types [11]. This was
confirmed by immunofluorescence staining in shCtrl
and shHDAC1 IEC-6 cell lines (data not shown).
Growth of Hdacl-depleted cells was reduced about
1.9-fold. Indeed, doubling times for both shHDAC1 cell
lines were respectively 38 + 3.1 h and 43.5+ 3.7 h, as op-
posed to 22.2+ 0.6 h and 20.7 £ 1.4 h for the shCtrl cell
lines (p <0.05). In addition, cell number measurement
showed a 50% reduced cell density for shHDAC1 cell
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Figure 1 Hdac1 depletion alters IEC-6 cell proliferation and deacetylase activity. A. Total RNAs were extracted from two shCtrl (5; 9) or
shHDACT (18; 21) IEC-6 cell lines. Class | Hdac1, Hdac2, Hdac3 and Hdac8 mRNA levels were measured by semi-quantitative RT-PCR, with Gapdh
as a control for the amount of cDNA amplified. Results are representative of two independent experiments. B. Nuclear protein extracts from shCtrl
(5; 9) and shHDACT (18; 21) IEC-6 cells were subjected to Western blot analysis, with Hdac1 and Hdac2 specific antibodies. Lamin B (Lmnb1) detection
was used as a control for protein loading. €. 10,000 shCtrl (5; 9) and shHDACT (18; 21) IEC-6 cells were plated in each well of a 24-well plate. Cell growth
was measured by cell counting with a hemocytometer between 3 and 8 days after seeding. Results are representative of two independent experiments.
Differences in cell numbers between shCtrl and shHDACT cells are statistically significant ¢ p <005 - p<001). A, shCtrl 5; m, shCtrl 9; ¢, shHDAC1 18; e,
shHDACT 21. D. Nuclear proteins from shCtrl and shHDACT IEC-6 cells were immunoprecipitated with specific antibodies against Hdac1, Hdac2 and
mSin3a. Deacetylase activity was measured using a commercial colorimetric HDAC assay kit. Deacetylase activity was calculated in pmoles/min/mg. Results
are representative of two independent experiments.
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lines, as compared to control cells (Figure 1C). Hdacl-
depleted cells appeared larger, thinner, less cylindrical
and refractive, when observed by phase contrast micros-
copy (data not shown). Thus, Hdacl depletion decreases
IEC-6 cell proliferation and modifies cell morphology.

Hdac1 depletion leads to decreased deacetylase activity

Hdac1l and Hdac2 are subunits of Sin3A, NuRD and CoR-
EST co-repressor complexes [7]. To determine whether
Hdacl depletion modulated the deacetylase activity of
Hdacl-containing complexes, we immunoprecipitated
nuclear Hdacl-, Hdac2- or Sin3A-containing complexes,
and measured associated deacetylase activity. Deacetylase
activity of Hdac2-containing complexes was not modified
in the absence of Hdacl (Figure 1D). In contrast, Hdacl-
as well as Sin3A-containing complexes displayed reduced
deacetylase activity in Hdacl-depleted cells. Of note,
Hdacl depletion did not significantly alter levels of
co-repressor complex interacting proteins, such as
Sin3A, Ing2, Mbd3, RbAp48, CoREST and Lsdl (data
not shown). Thus, Hdacl depletion leads to decreased
deacetylase activity associated with co-repressor complexes.

Hdac1 depletion leads to prolonged nuclear localization of
IL-1B-induced NF-kB p65 and C/EBPP phosphorylated forms
We have previously shown that Hdacl negatively regu-
lated IL-1B-dependent induction of the acute phase pro-
tein haptoglobin in IEC-6 cells [24]. In order to uncover
the impact of Hdacl depletion on IL-1B signalling in
IEC, we analysed the phosphorylation and expression
levels of IL-1B signaling transcription factor targets,
namely NF-kB p65 and p50 subunits as well as C/EBPf.
Basal nuclear p65 protein levels were reduced in Hdacl-
depleted cells, and p50 levels were minimal (Figure 2A).
In both shCtrl and shHDACI cells, p65 and p50 translo-
cated to the nucleus after 10 min of IL-1f treatment,
with a gradual decrease thereafter. We then verified the
status of p65 Ser536 phosphorylation associated with in-
creased transcriptional activation [18]. Basal nuclear p65
phosphorylated levels were increased in Hdacl-depleted
cells. Interestingly, the time course of phosphorylation
was different. Indeed, p65 phosphorylation occurred after
10 min of IL-1p treatment, in both shCtrl and shHDAC1
cell lines. However, whereas p65 phosphorylation de-
creased rapidly in control cells, p65 phosphorylation
was maintained for more than 2 h in Hdacl-depleted
cells (Figure 2A). These results show that Hdacl deple-
tion leads to increases in the proportion of nuclear
phosphorylated p65, as opposed to total p65, at late
times of IL-1pB induction, and to different phosphoryl-
ation kinetics, suggesting prolonged activity. Of note,
IL-1p did not modify Hdacl and Hdac2 protein as well
as mRNA expression in control and Hdacl-depleted
cells (data not shown).
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Figure 2 Hdac1 depletion leads to prolonged nuclear NF-kB
p65 and C/EBP phosphorylation after IL-13 induction in IEC-6
cells. ShCtrl 5 (+) and shHDAC1 18 (-) IEC-6 cells were induced with
10 ng/ml of IL-13 for 10 min, 30 min, 1 h, 2 h and 4 h. Nuclear pro-
teins were separated by 10% SDS-PAGE and proteins were analysed
by Western blotting using specific antibodies against phosphory-
lated Ser536 or non-phosphorylated NF-kB p65 as well as against
total NF-kB p50 (A), or against phosphorylated Ser105 or non-
phosphorylated C/EBPB (LAP and LIP isoforms) (B). Lamin B (LmnbT1)
detection was used as a control for protein loading. Results are rep-
resentative of four independent experiments.

J

Regarding C/EBPp, basal nuclear C/EBPB LAP and
LIP isoform levels were decreased in Hdacl-depleted
cells (Figure 2B). In response to IL-1p, nuclear C/EBPP
protein levels increased after 2 h in control and Hdacl-
depleted cells. We then verified C/EBPB LAP Serl05
phosphorylation associated with increased transactiva-
tion [22]. Basal nuclear C/EBPBP LAP phosphorylated
levels were increased in Hdacl-depleted cells, as op-
posed to control cells (Figure 2B). C/EBPB phosphory-
lated levels transiently increased in control cells, with a
peak at 30 min, after IL-1f induction. In contrast, C/EBPB
phosphorylated levels gradually increased for 2 h before a
reduction at 4 h in Hdacl-depleted cells. Again, as for
NF-kB p65, these results show that Hdacl depletion leads
to an increase in the proportion of phosphorylated C/EBPp,
as opposed to total C/EBPB, and to different phosphoryl-
ation kinetics.

Hdac1 differently modulates IL-1B-induced inflammatory
response gene expression and cytokine secretion

We then analysed the expression of pro-inflammatory cy-
tokines and chemokines in control and Hdacl-depleted
cells after 24 h IL-1p treatment. Semi-quantitative RT-PCR



Gonneaud et al. Journal of Inflammation (2014) 11:43

analysis showed different patterns of expression in Hdacl-
depleted cell lines, as compared to control cell lines. First,
basal as well as IL-1B-induced mRNA levels of two acute
phase protein genes, namely Hp and Kngl, were both in-
creased in Hdacl-depleted cells (Figure 3). A second group,
with increased IL-1(B-induced levels in Hdacl-depleted
cells, as opposed to control cells, included Cxcl2. Interest-
ingly, a third group of genes, including Ccl2, Ccl5, Cxcll
and C3, showed a decrease in basal levels, followed by
similar IL-1p induction to that of control cells (Figure 3).
To determine whether similar changes in inflamma-
tory gene protein levels also occurred, we verified the
expression of cytokines and chemokines with a protein
array, in response to IL-1B. The same three patterns of
expression were observed. First, Hdacl depletion led to
decreased basal protein expression of Cxcl3, Vegf and
Ccl2, with similar levels of induction between control
and Hdacl-depleted cells (Figure 4A). Ccl2 mRNA levels
correlated with protein levels (Figure 3). Second, Ccl20
mRNA levels were increased and CNTF mRNA levels
were decreased by IL-1[ similarly in both cell types, sug-
gesting a regulation independent of the presence or absence
of Hdacl (Figure 4B). Hdacl depletion led to increased IL-
1B-dependent induction of Cx3cll, Timpl and Cxcl2 pro-
tein levels (Figure 4C), without affecting basal protein levels.
Cxcl2 mRNA levels correlated with protein levels (Figure 3).
Finally, Cxcl5 and B-NGF IL-1B-induced levels were de-
creased in Hdacl-depleted cells (Figure 4D). These results
uncover a role for Hdacl as a repressor and an activator of

shCitrl shCtrl shHDAC1 shHDACI1
5 9 18 21

- IL-1p - IL-1p - IL-1p - IL-IB
Hp |
Kngl | — |

—

Ccl2

Ccl5

Cxcll |

c3| -

Cxcl2 |

Gapdh |

Figure 3 Hdac1 depletion differentially modulates the
expression of inflammatory response genes in IEC-6 cells. Two
shCtrl (5; 9) and shHDACT (18; 21) IEC-6 cell lines were treated with
or without 10 ng/ml of IL-1( for 24 h. Total RNAs were isolated and
expression levels of various inflammatory response genes (Hp, Kng1,
Ccl2, Ccl5, Cxcl1, €3 and Cxcl2) were assessed by semi-quantitative
RT-PCR. Gapdh was used as a control for the amount of cODNA amplified.
Results are representative of two independent experiments.
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inflammatory gene expression in response to IL-1P. Intri-
guingly, Hdacl depletion renders expression of a subset of
inflammatory genes more inducible in response to IL-1p,
when compared to basal expression levels.

JQ1 bromodomain acetyl-binding inhibitor reduces
chemokine mRNA expression in IEC-6 cells

BET proteins interact with acetylated lysines on histones
or transcription factors, through a BET domain [30]. BET
protein Brd4 regulates transcriptional elongation of a sub-
set of LPS-induced genes in macrophages [31]. Selective
pharmacological inhibition of BET interaction with
acetylated lysines, with I-BET [32] and JQ1 inhibitors
[26,33,34], impairs inflammatory gene expression in
macrophages, suggesting a critical and gene-specific
role for BET proteins in the control of inflammation.
To determine whether HDAC1 depletion affected BET
protein dependent regulation of inflammatory gene
expression in IEC, we treated non-induced and IL-1§-
induced shCtrl and shHDACI cells with the JQI1 in-
hibitor. Basal levels of Ccl2, Ccl5, Cxcl2 and Cxcl12
mRNAs were reduced after JQ1 BET protein inhibitor
addition, in control cells (Figure 5). Hdacl-depleted
cells displayed reduced basal mRNA levels of Ccl2,
Ccl5 and Cxcl2, while Cxcl12 mRNA levels were in-
creased. JQ1 treatment did decrease both Ccl5 and
Cxcl12 basal mRNA levels in shHDACI cells. Inter-
estingly, JQ1 treatment resulted in similar decreased
expression of IL-1B-induced chemokine genes in both
control and Hdacl-depleted cells, suggesting that Hdacl
depletion does not alter the BET protein dependent regu-
lation of chemokine genes in response to IL-1p.

Hdac1 depletion reduces RNA polymerase Il recruitment
at the Ccl2 promoter in IEC-6 cells

Our previous results show that Hdacl depletion leads to
a reduction of basal mRNA levels of a subset of chemo-
kines, namely Ccl2, Ccl5 and Cxcll. To verify whether
this decrease implicated RNA polymerase II promoter
recruitment, RNA polymerase II elongation or both, we
determined by chromatin immunoprecipitation, the re-
cruitment of RNA polymerase II to Ccl2 promoter and
exon 2 sequences, with the housekeeping gene Gapdh as
a control. Our data show that RNA polymerase II was
recruited to Gapdh promoter and exon 2 sequences in
both shCtrl and shHDAC1 cells, suggesting that Hdacl
depletion does not affect RNA polymerase II engage-
ment to the Gapdh gene (Figure 6). However, RNA poly-
merase Il recruitment to both Ccl2 promoter and exon
2 regions was reduced in shHDACI cells, as opposed to
shCtrl cells. Thus, Hdacl depletion could result in basal
gene-specific chromatin alterations which affect RNA
polymerase II recruitment. Of interest, while these mod-
ifications alter basal expression levels of a subset of
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Figure 4 Hdac1 depletion differentially modulates inflammatory protein secretion in IEC-6 cells. Two shCtrl and shHDACT IEC-6 cells were
treated with or without 10 ng/ml of IL-1B for 24 h. Supernatants from untreated or IL-1(3 treated shCtrl and shHDAC1 cells were harvested and
cytokine secretion was measured with a commercial cytokine and chemokine array. The histograms represent the mean fluorescence intensity of
duplicate experiments, measured with a ScanArray Express Microarray scanner. Secreted protein expression patterns are shown in A (Cxcl3, VEGF,
Ccl2), B (Ccl20, CNTF), € (Cx3cl1, Timp1, Cxcl2), and D (Cxcl5, B-NGF).

genes, such as Ccl2, IL-1p mediated transcriptional acti-
vation is still observed.

Discussion

Our results establish a gene-specific role for Hdacl in
the control of IL-1p-dependent inflammatory response
in IEC. We have shown that Hdacl depletion leads to a
decrease in Sin3a-associated deacetylase activity. While
Hdac2 protein levels are increased, this does not result
in Hdac2-associated increases in deacetylase activity.
This suggests that Hdac2-dependent deacetylase activity
is not as efficient as Hdacl-dependent activity. Indeed,
Hdac2 deletion in embryonic stem cells, in contrast to

Hdac1 deletion, does not significantly reduce Hdac activity
of various co-repressor complexes [35]. In addition, Hdac2
depletion in IEC-6 cells does not alter cell proliferation or
gene expression patterns of chemokines in response to
IL-1f (data not shown). Thus, the more important
contribution of Hdacl deacetylase activity could explain,
in part, the Hdacl-dependent regulation of inflammatory
gene expression.

We show that Hdacl depletion leads to increased nu-
clear maintenance of phosphorylated forms of two major
regulators of the inflammatory response, namely NF-kB
p65 and C/EBPp, suggesting that Hdacl may modulate
the duration of inflammatory signals. Both phosphorylated
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Figure 5 Hdac1 depletion does not modify JQ1 inhibitory
action on IL-1B-dependent Ccl2, Ccl5 and Cxcl2 mRNA expression
in IEC-6 cells. ShCtrl and shHDACT IEC-6 cells were pre-incubated
for 4 h with 1 uM of the JQ1 bromodomain acetyl-binding inhibitor,
before adding 10 ng/ml of IL-1B for an additional 8 h. Total RNAs
were isolated and expression levels of various inflammatory response
genes (Ccl2, Ccl5, Cxcl2 and Cxcl12) were assessed by semi-quantitative
RT-PCR. ShCtrl and shHDAC1 cDNA fragments for Ccl2, Ccl5, Cxcl2,
(Cxcl12 and Gapdh were respectively separated by electrophoresis on
the same gel, and were detected by ethidium bromide staining. Gapdh
was used as a control for the amount of cDNA amplified. Results are
representative of three independent experiments.

forms are associated with increased transcriptional activa-
tion [18,22]. It has been shown that Hdacl and Hdac3
deacetylate NF-kB p65, leading to decreased transcrip-
tional activity [18]. In addition, it has been suggested that
Hdac3-dependent NF-kB p65 deacetylation promotes a
nuclear interaction between NF-kB p65 and the inhibitor
protein IkBq, leading to NF-kB p65 nuclear export [20]. In
contrast, our data show a similar time-dependent nuclear
export pattern for NF-kB p65 and p50 in both control and
Hdacl-depleted cells, while a selective maintenance of the
phosphorylated and transcriptionally activated NF-xB p65
form is observed. This is not specific to NF-kB since we
observe the same selective sustenance of a C/EBPP phos-
phorylated form. Thus, Hdacl may regulate the duration
of the inflammatory response by modulating specifically
the pattern of nuclear export of phosphorylated NF-kB

shCtrl shHDAC1 shCtrl shHDAC1

Input - + Input - + Input - + Input - +

Ccl2 prom

Ccl2 ex2 T———

GAPDH ex2

Figure 6 Hdac1 depletion alters RNA polymerase Il enrichment
at the Ccl2 promoter in IEC-6 cells. Chromatin immunoprecipitation
assays were performed with chromatin extracts from shCtrl and
shHDACT IEC-6 cells, without antibody (-), or with antibodies against
RNA polymerase Il (+). Input and immunoprecipitated samples were
subjected to semi-quantitative PCR analysis with oligonucleotides
amplifying Ccl2 and Gapdh promoter (prom) and downstream gene
body (ex 2) sequences. Results from two independent experiments
are shown.
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p65 and C/EBPp. Both NF-kB p65 and C/EBPp are acety-
lated, and this acetylation stimulates transcription [18,22].
It is possible that increased nuclear levels of phosphoryl-
ation of both NF-kB p65 and C/EBPf are enhanced and
maintained by pre-existing increased acetylation modifica-
tions in Hdacl depleted cells. Indeed, a positive interplay
between S536 NF-kB p65 phosphorylation and acetylation
for transcriptional activation has been proposed [20,21].
Thus, Hdacl depletion may prolong inflammatory signals
in IEC-6 cells, by insuring a selective time-dependent
maintenance of NF-«kB p65 and C/EBPP activation. In
addition to increased global histone acetylation resulting
from Hdacl depletion (Gonneaud et al., submitted), main-
tenance of inflammatory transcription factor activity may
be involved in the increased expression of inflammatory
genes, such as Hp and Cxcl2, in response to IL-1p in
IEC-6 cells.

The pattern of expression of a subset of inflammatory
genes, including Ccl2 and Ccl5, is intriguing. Indeed,
while Hdacl depletion leads to decreased basal mRNA
levels, Hdacl deficiency does not alter the IL-13-dependent
induction, since the same level of expression is achieved in
shHDACT1 cells as in control cells. Thus, the end result is
an enhanced range of expression in response to IL-1 when
Hdacl is depleted. This could in part be due to the main-
tenance of the nuclear inflammatory signals, as assessed by
increased duration of nuclear phosphorylation of inflamma-
tory transcription factors. Of note, both NF-kB and C/EBPB
are considered to be involved in the regulation of these
genes.

Many inflammatory genes are characterized by the
presence of paused RNA polymerase II complexes at
their promoter [31]. Inflammatory stimuli then lead to
transcriptional elongation induction. BRD proteins, such
as Brd2 and Brd4, which bind acetylated residues on his-
tones and transcription factors, are important regulators
of transcriptional elongation of a subset of inflammatory
genes with paused polymerase II [30]. We show here
that IL-1B-dependent expression of some chemokine
genes depends on BRD proteins in IEC, as assessed by
pharmacological inhibition with the JQ1 bromodomain
acetyl-binding inhibitor. Interestingly, Hdacl deficiency
does not modify the level of response to the inhibitor,
suggesting that increased global acetylation levels do
not alter BRD-dependent transcriptional processes after
IL-1p stimulation. However, Hdacl depletion leads to de-
creased basal mRNA levels of a subset of inflammatory
genes. We show that diminished Ccl2 gene basal expres-
sion may be in part due to alterations in the recruitment
of RNA polymerase II-containing complexes to promoter
regions, as assessed by chromatin immunoprecipitation
assays. Thus, Hdacl may act as a co-activator insuring
basal expression levels. Indeed, Hdacl is required for the
induction of a subset of glucocorticoid responsive genes
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[36]. In addition, transcriptomic studies of cells treated
with HDAC inhibitors or selectively depleted in HDAC
have identified both reduced and induced gene expression
patterns, suggesting that the action of HDAC is not entirely
repressive [37]. Chromatin immunoprecipitation studies
have found that HDAC, including Hdacl, as well as
HAT complexes, co-localize at active genes [38]. Based
on these results, it has been proposed that HDAC may
enable novel rounds of transcriptional initiation by
clearing the promoter of newly deposited chromatin acety-
lated modifications. Hdacl depletion may alter deacetylase
activity of Hdacl-containing multiprotein co-repressor
complexes [9], leading to increased chromatin acetyl-
ation and to defects in associated chromatin-modifying
activities, such as chromatin remodelling. These modi-
fications may destabilize the chromatin, leading to ei-
ther repressive or activating gene-specific chromatin
environment. For example, genes such as Ccl2, Ccl5,
Cxcll and C3 may be more sensitive to these altered
modifications, leading to decrease in basal expression
levels and a more repressive chromatin.

Conclusion

In conclusion, we have shown that Hdacl is a major
HDAC controlling the IEC IL-1B-dependent inflamma-
tory response. Hdacl may play important roles in regu-
lating duration of IL-1p-mediated IEC inflammatory
signals, gene-selective maintenance of chromatin stabil-
ity and proper expression ranges in response to inflam-
matory signals.
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