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Background: Hemorrhagic shock and resuscitation (HS/R) can induce multiple organ failure which is associated
with high mortality. The lung is an organ commonly affected by the HS/R. Acute lung injury is a major cause of
dysfunction in other organ systems. The objective of this study is to test the hypothesis that HS/R causes increased
gut permeability which results in induction of high mobility group box1 protein (HMGB1) and further leads to the

Materials and methods: A mouse model of HS/R was employed in this study. Gut permeability and bacterial
translocation were assessed with circulating FD4 and lipopolysaccharide (LPS). Circulating HMGB1 was determined
with ELISA. Acute lung inflammation (ALl) was determined with lung myeloperoxidase (MPO) activity and

Results: HS/R induced intestinal barrier dysfunction as evidenced by increased circulating FD4 and LPS at 30 min
and 2 hrs after resuscitation, respectively. In addition, circulating HMGBT1 levels were increased in mice with HS/R as
compared with sham animals (p < 0.05). HS/R resulted in ALl (increased lung MPO activity and pulmonary protein
leakage in mice with HS/R compared with sham mice, p < 0.05). Inhibition of HMGB1 (A-box and TLR4 ™) attenuated
the ALl in mice with HS/R. However, inhibition of HMGB1 did not show protective effect on gut injury in early phase of

Conclusions: Our results suggest that induction of HMGB1 is important in hemorrhagic shock and resuscitation-induced
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Introduction

Traumatic injury is the leading cause of death in people
who are under 45 years in the United States. Hemorrhagic
shock remains to be the leading cause of mortality, ac-
counting for 30-40% of trauma related death. Patients
recovering from hemorrhagic shock frequently develop a
systemic inflammatory response which can put the pa-
tients at risk for multiple organ failure (MOF) [1-3]. How-
ever, the exact mechanism(s) leading to MOF after the
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onset of hemorrhagic shock and resuscitation (HS/R)
needs to be elucidated.

The gut is one of the most vulnerable organ to be in-
jured during HS/R [4]. The gut mucosa is affected in
HS/R, resulting in significant local inflammation and
enterocyte injury, breech of the intestinal barrier and
translocation of harmful mediators and pathogens from
lumen into intestinal tissue. Gut ischemia during the
hemorrhagic shock is believed to further induce remote
organ dysfunction. Therefore, the injured gut serves to
propagate systemic injury during HS/R and initiates the
process for induction of MOF [4,5].

As previous studies indicate that HS/R induces sys-
temic ischemia/reperfusion which causes injuries to
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affected tissues due to robustly generation of reactive
oxygen species (ROS). The ROS leads to exaggerated
systemic inflammatory responses and cytokine production.
According to literature, neutrophils are important contrib-
uting factors to ROS and cytokine production. Thus, the
accumulation of the activated neutrophils within the lungs
has been reported as an important factor in induction of
lung injury, and further progress to acute respiratory dis-
tress syndrome (ARDS) in the clinical setting [6,7].

High mobility group box1 protein (HMGB1) is an alar-
min and cytokine which can be released from activated
immune cells as well as stressed and/or necrotic cells,
including cardiac myocytes, in response to tissue injury
[8-10]. In general, HMGBI1 exerts its biological roles
through interaction with several HMGB1 receptors in-
cluding: receptor for advanced glycation end products
(RAGE), toll-like receptor-2 (TLR2), TLR4 and TLR9
[10]. However, HMGBI needs to interact with TLR4 in
order to induce a proinflammatory response [10]. We
have demonstrated that HMGBLI is an important medi-
ator in sepsis-induced myocardial dysfunction [8]; an
increase in HMGBI1 expression by cardiomyocytes after
ischemia/reperfusion contributes to myocardial apoptosis
[11]. However, the role of HMGBI1 in HS/R-induced MOF,
specifically, the development of lung inflammation after
the HS/R is not clear.

By using a mouse model of HS/R, we tested the hy-
pothesis that HS/R induces gut injury and further leads
to increase in circulating levels of HMGBI; the latter ef-
fect results in lung inflammation and injury. The study
is the first to provide mechanistic information which
links HS/R-induced gut injury and subsequent acute
lung inflammation/injury.

Materials and methods

Mice

C57BL/6 mice were obtained from Charles River Canada
(St. Constant, PQ, Canada). TLR4 ™'~ mice on a C57BL/6
background were obtained from Jackson Laboratories.
The mice were housed in Vivarium Service at Victoria
Research Laboratories with a 12-hour light/dark cycle
and free access to rodent chow and tap water. The experi-
mental protocol followed the institution’s guide for the care
and use of laboratory animals and was approved by the
Western University Animal Care and Use Committee
(Protocol No. 2011-028).

Mouse model of hemorrhagic shock and resuscitation

Ten-week old, male mice were anesthetized with intra-
peritoneally (i.p.) injection of ketamine (120 mg/kg) and
xylazine (4 mg/kg). Both the right jugular vein and the
right carotid artery were cannulated. The jugular vein
cannulation was used for the administration of heparin
and resuscitation. The carotid artery cannulation was used
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for blood pressure monitoring and blood withdrawal.
Hemorrhagic shock was initiated by blood withdrawal and
a reduction of the mean arterial blood pressure (MAP) to
30 mmHg in 15 min. The blood was harvested into a 1-ml
syringe with heparin to prevent coagulation. The MAP
was kept at 30 mmHg for another 60 minutes. Subse-
quently, the mice were resuscitated with transfusion of 1.5
volume of Ringer’s Lactate (RL) over 10 min followed by
transfusion of red blood cells derived from the shed blood
diluted with 1 volume of RL. Subsequently, the catheters
were removed, the blood vessels were ligated and incision
closed [12]. In some experiments, mice were given A-box
(300 pg/mouse) [8], a HMGBI inhibitor, at the beginning
of the shed blood transfusion. The sham mice underwent
same surgical procedures without blood withdrawal and
resuscitation.

Circulating Lipopolysaccharide (LPS) and HMGB1

Mouse blood samples were collected into heparinized
tubes. Blood plasma was obtained after centrifugation
(4°C, 500 g for 5 min). The circulating levels of LPS and
HMGBL1 were determined using a chromogenic Limulus
Amebocyte Lysate (LAL) endotoxin assay kit (Lonza,
Walkersville, MD, USA) and a HMGB1 ELISA kit (IBL
International, Hamburg, Germany) according to instruc-
tions provided by the manufacturers.

Terminal ileum permeability assay

Gut permeability was assessed using a method described
previously with modifications [13]. Briefly, after one
hour resuscitation, a 1-cm segment of ileum proximal to
the cecum with intact superior mesenteric vessels was
dissected. The two ends of the isolated ileum segment
were ligated with 2-0 silk sutures. 0.2-ml of 0.1 M
phosphate-buffered saline (PBS at PH 7.2) containing
25 mg/ml of FITC-dextran (FD-4; molecular weight
4000; Sigma-Aldrich) was injected into the lumen and
blood samples were obtained 30 min after the FD-4
injection. Circulating FD-4 levels were determined with
a Victor-3 multilabel counter (PerkinElmer Life and
Analytical Sciences, Wallac Oy, Turku, Finland) at the ex-
citation and emission wavelengths of 480 nm and 520 nm,
respectively. Standard curves for calculating the FD-4
concentration in the samples was obtained by diluting
various amounts of FD-4 in PBS.

Lung Myeloperoxidase (MPO) activity

The MPO activity in the lung tissue was measured as an
index of lung inflammation as previously described. Briefly,
lung tissue was homogenized and sonicated in detergent
buffer. The prepared samples were used in reactions for
MPO activity determined spectrophotometrically (650 nm)
by measuring hydrogen peroxide-dependent oxidation of
3, 3',5,5 -tetramethylbenzidine [14].
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Pulmonary protein leakage

Evans blue dye (EB) was used to assess pulmonary pro-
tein leakage as previously described [15]. Briefly, mice
were sacrificed with intravenous sodium pentobarbital
(100 mg/kg) and blood was aspirated via cardiac punc-
ture into a heparinized syringe for isolation of plasma
30 min after injected with Evan’s blue (EB, 0.4%). The
pulmonary circulation was flushed with cold PBS. The
lungs were excised, rinsed in PBS, blotted dry, snap fro-
zen in liquid nitrogen, and stored at —80°C. The frozen
tissue was homogenized in PBS (4°C) and incubated in
formamide (60°C, 16 hours). After centrifugation (7,000 g)
for 25 minutes at 4°C, the light absorption of the super-
natant at 620 nm (Agy) and 740 nm (A4o) were recorded.
Tissue EB content (ug EB/g lung tissue/minute) was
calculated by correcting Agy for the presence of heme
pigments: Agyo (corrected) = Agyg — (1.426 x Ayyp + 0.030)
and comparing this value to a standard curve of EB in
formamide/PBS.

Generation of A-box

A-box was generated in our laboratory as previously de-
scribed [8]. Briefly, plasmid (pGEX-5X-2) containing
coding for A-box (a gift of Dr C-Y Wang, Medical College
of Georgia, USA) or control plasmid was transformed into
E. coli BL21 (DE3) and incubated in 2YT medium contain-
ing ampicillin (100 mg/mL) for 3—4 hrs at 37°C. Fusion
protein A-box or GST was induced by 0.5 mM isopropyl
D-thiogalctopyranoside and purified by using Glutathione
Sepharose affinity column. The purified A-box or GST was
passed over polymyxin B columns to remove any contam-
inating LPS.

Statistics

Data are expressed as mean = SEM. Statistical analysis
was performed with two-way ANOVA followed by a
Bonferroni correction for multiple comparisons. Graph
Pad Software program was used for statistical analysis. A
p value of less than 0.05 is considered to be statistically
significant.

Results

HS/R induces intestinal barrier dysfunction
Gastrointestinal system is the most vulnerable organ to
be injured during the HS/R [16,17]. In order to deter-
mine whether HS/R results in intestinal barrier dysfunc-
tion manifested by an increase in gut permeability and
bacterial leak into the circulation, we measured circulat-
ing levels of FD4 and LPS. As shown in Figure 1, circu-
lating FD4 was increased 30 min post resuscitation,
which was associated with increased circulating levels
of LPS. The circulating LPS peaked at 2 hrs after the
resuscitation.
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Figure 1 Hemorrhagic shock and resuscitation results in
increased mouse gut permeability and bacterial translocation
into mouse circulation. Mice were subjected to either sham
procedure or hemorrhagic shock and resuscitation (HS/R). A. Gut
permeability was assessed 30 min after completion of resuscitation.
Five mice in each group, *p < 0.05 compared with sham group.

B. Blood samples from sham or HS/R mice were collected at times
indicated. Plasma levels of circulating LPS were determined with a
Limulus Amebocyte Lysate (LAL) endotoxin assay kit. Six mice per
group, *p < 0.05 compared with sham group.

HS/R increases circulating HMGB1 and induces lung
inflammation and pulmonary protein leakage

HMGBI is a cytokine involved in several inflammatory
diseases [8,10]. Previous studies indicate endotoxemia
results in its up-regulation of HMGB1 [8]. Thus, there is
a possibility that intestinal dysfunction and bacterial
translocation induced by HS/R can cause further organ
dysfunction by induction of the HMGBI1. As shown in
Figure 2, circulating HMGB1 was increased 24 hrs after
the HS/R (Figure 2A). Moreover, the HS/R challenge re-
sulted in increased lung MPO activity and pulmonary
protein leakage (Figure 2B and C).

HMGB1 mediates the HS/R-induced acute lung injury
In order to determine whether the HMGB1 mediates the
HS/R-induced lung inflammation, mice with hemorrhagic
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Figure 2 HMGB1 mediated HS/R-induced acute lung injury
(ALI). Mice were subjected to sham surgery, HS/R, or HS/R plus
A-Box (300 pg, i.p., given at the beginning of the transfusion of shed
blood). A. Mouse blood was collected 24 hrs after resuscitation,
plasma was obtained by centrifugation and circulating HMGB1 was
determined with a HMGB1 ELISA kit. Five mice per group, *p < 0.05
vs sham group. B and C. Twenty-four hours after resuscitation,
mouse ALl was assessed using tissue MPO activity (B) and pulmonary
protein leakage (C). Six mice per group for MPO activity experiments;
Five mice in each group for pulmonary protein leakage experiments,
*p <00 vs. sham; *p < 005 vs. HS/R.

shock were given A-box (300 pg/mouse) at the be-
ginning of resuscitation with the RL and the lung
MPO activity and pulmonary protein leakage were
assessed. In addition, the HMGBI receptor, TLR4 ™'~
gene knockout mice were challenged with sham or
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HS/R procedures, the circulating HMGB1 levels as well
as lung MPO activity and pulmonary protein leakage
were evaluated. As shown in Figure 2B and C, A-box
treatment attenuated the HS/R-induced increase in lung
MPO activity and prevented the pulmonary protein
leakage. Moreover, as shown in Figure 3A, similar to
the wild type counterparts, HS/R resulted in an increase
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Figure 3 Deficiency of TLR4 attenuates HS/R-induced acute
lung inflammation. Wild type (WT) and TLR4~~ mice were
subjected to either sham or HS/R and mouse circulating HMGB1 (A),
lung MPO activity (B) and pulmonary protein leakage (C) were
determined 24 hrs after resuscitation. A. Five mice in each group,
*p <0.05 vs. WT sham; +p < 0.05 vs. TLR4™~ sham; no difference
between WT HS/R and TLR4—/— HS/R; B and C. Five mice in each
group. *p < 0.05 vs WT sham, *p < 0.05 vs WT HS/R.
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in circulating HMGBI1 in TLR4™'~ mice; however, the
increase in lung MPO activity and pulmonary protein
leakage were prevented in TLR4™'~ mice with HS/R as
compared with the wild type controls.

HMGB1 on gut injury in the early phase of HS/R

To determine whether HMGBL1 plays a role in the HS/
R-induced gut injury/dysfunction, A-box was given to
shock mice during the resuscitation stage and circulating
levels of FD4 and LPS were determined at 30 min and
2 hrs after the resuscitation, respectively. In addition,
mice deficient in TLR4 were challenged with HS/R,
the circulating levels of FD4 and LPS were evaluated.
As shown in Figure 4, pharmacologically inhibition of
HMGBL1 (A-box) (Figure 4A) or genetically inhibition of
HMGBL1 (TLR4 gene deletion) (Figure 4B) did not prevent
the HS/R-induced gut injury/dysfunction.

Discussion

In the present study, we demonstrate that the gut injury
occurred after the resuscitation in a mouse model of
HS/R as indicated by increased gut permeability (circu-
lating FD-4 elevated). This result confirms our previous
finding using a rat model of HS/R [12]. We further dem-
onstrate that the gut injury in mice with HS/R leads to
bacterial translocation into circulating system as evident
by increased circulating levels of LPS. This data are also
consistent with our previous work which demonstrates
bacterial translocation to mesenteric lymph nodes due
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to gut injury [12]. A major function of the gut is to
maintain a physical barrier to prevent absorption of
toxin, antigen, and microorganisms. However, the gut is
highly vulnerable to ischemic insult during the HS/R.
We found increased gut permeability occurs as early as
30 min after resuscitation and causes bacterial transloca-
tion to circulating system which peaked at 2 hrs after
the resuscitation.

A significant complication in patients following HS/R
is acute lung injury (ALI) which is believed to be respon-
sible for the high mortality of these patients [4]. In-
creased circulating levels of cytokines and induction of
inflammation after resuscitation are considered to be the
key steps in the development of acute ling injury [18].
Our data indicate that elevated serum LPS level due to
intestinal dysfunction and bacterial translocation, and in-
duction of HMGB1 secondary to hemorrhagic shock are
important steps in the initiation of acute lung inflamma-
tion; inhibition of HMGBI attenuates the HS/R-induced
lung inflammation and pulmonary protein leak.

The cellular sources of increased HMGB1 in mice with
HS/R are not quite clear. As the HMGBI can be actively
secreted by inflammatory cells and stressed parenchyma
cells such as cardiomyocytes [8,11] hepatocytes and al-
veolar cells [19]. It can also be passively released by in-
jured and necrotic cells [10]. One important cell type
needs to note is natural killer T (NKT) cell within the
liver. It has been reported that NKT quickly produces
a wide array of cytokines under certain conditions to

we
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facilitate the liver as an important organ to modulate
systemic inflammatory response [20]. Thus, we believe
HMGB1 is produced by multiple sources in HS/R.

We have previously demonstrated that HMGB1 plays
important roles in sepsis-induced myocardial dysfunc-
tion and mediates I/R-induced myocardial apoptosis
[8,11]. HMGBI1 has ability to engage with several recep-
tors [10]. However, TLR4 is strictly required by HMGB1
for induction of cytokines expression and it is up regu-
lated in the context of tissue injury in animal models
[10]. Our results support this notion, HMGBL1 involved
in the HS/R-induced ALI by interaction TLR4, as inhib-
ition of HMGBI attenuated the ALI in the late phase of
HS/R (Figure 2 and Figure 3). The exact mechanism by
which the HMGB1 induces ALI remains not clear. It
has been reported that HMGBI1 is a chaperone protein
which can greatly enhance the effect of IL-1p [21]. We
have demonstrated that HMGBI itself cannot induce
cardiomyocyte apoptosis. However, HMGB1 potentiates
the TNFa-induced cardiomyocyte apoptosis [11]. There-
fore, we think HMGBI1 involved in ALI through inter-
action with other cytokines.

The lung is an important organ targeted by inflamma-
tory mediators following HS/R resulting in acute lung
injury. Studies have confirmed that the pulmonary
microvascular changes along with neutrophil infiltra-
tion and accumulation in the pulmonary vasculature in
the early stages of HS/R [22,23]. The proposed “two-hit”
hypothesis for acute lung injury revealed that HS/R
primes the innate immune system for a second insult
such as bacterial LPS to initiate an exaggerated inflam-
matory response in the lung [2]. Previous studies have
demonstrated that HMGBI can directly activate macro-
phages [24] and activated alveolar macrophages could
produce chemokines to recruit PMN to the lungs and
exaggerate lung inflammation and consequently ALI
[25,26], but the exact mechanism(s) by which HMGB1
induces ALI remains unknown. Barness et. al. studied the
relationship of TLR4 in mediating lung injuries following
HS/R and hypothesized that TLR4 is needed for both the
hemorrhagic shock and LPS-induced lung injury [27].
Thus, inhibition of HMGBI function in HS/R might be
an important step in prevention of acute lung injury in-
flammation/injury in the treatment of HS/R. The patho-
logical sequence of events involved in HS/R are complex
and not yet well-defined [4]. Consequently, ischemia/
reperfusion and systemic inflammatory syndromes are
two fundamental conventional events that results in
systemic activation of immune system to the develop-
ment of multiple organ dysfunctions.

Conclusions
By using the mouse model of HS/R, we have demon-
strated that gut permeability is increased during the
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hemorrhagic shock followed by resuscitation which
causes bacterial translocation to circulating system.
Increase in circulating bacterial LPS and tissue ische-
mia further results in increase in inflammation medi-
ator HMGB1. HMGB1 appears to be an important
mediator of acute lung injury that may be at least partly
through interaction with TLR4. Thus, inhibition of
HMGB1 may be a therapeutic target for the treatment
of hemorrhagic shock/resuscitation-induced multiple
organ dysfunctions.
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