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Abstract

allergen exposure.

neutrophils was performed by flow cytometry.

response.

Background: Serine proteases in German cockroach (GC) have been shown to mediate allergic airway
inflammation through the activation of protease activated receptor (PAR)-2. Neutrophils play an important role in
regulating the innate immune response, and are recruited into the airways following GC frass exposure. As such, we
investigated the role of PAR-2 in airway neutrophil recruitment, activation and cytokine production following

Methods: Wild type and PAR-2-deficient mice were administered a single intratracheal instillation of PBS or GC frass
and neutrophil recruitment, expression of PAR-2, CD80, CD86, and MHC class Il were assessed by flow cytometry
and levels of tumor necrosis factor (TNF)a was assessed by ELISA. Uptake of AlexaFluor 405-labeled GC frass by

Results: Neutrophil recruitment in the lung and airways following GC frass exposure was significantly decreased in
PAR-2-deficient mice compared to wild type mice. GC frass exposure increased the level of PAR-2 on pulmonary
neutrophils and increased numbers of PAR-2-positive neutrophils were found in the lungs; however PAR-2 did not
play a role in meditating allergen uptake. Comparing wild type and PAR-2-deficient mice, we found that a single
exposure to GC frass increased levels of CD80 and CD86 on pulmonary neutrophils, an effect which was
independent of PAR-2 expression. Neutrophils isolated from the whole lungs of naive PAR-2-deficient mice treated
ex vivo with GC frass produced significantly less TNFa than in similarly treated wild type neutrophils. Lastly,
neutrophils were isolated from the bronchoalveolar lavage fluid of wild type and PAR-2-deficient mice following a
single intratracheal exposure to GC frass. Airway neutrophils from PAR-2-deficient mice released substantially
decreased levels of TNFa, suggesting a role for PAR-2 in neutrophil-derived cytokine production.

Conclusions: Together these data suggest PAR-2 expression can be upregulated on lung neutrophils following
allergen exposure and the consequence is altered release of TNFa which could drive the early innate immune

Background

Asthma is regarded as a chronic inflammatory disease of
the airways, characterized by airway hyperrespon-
siveness, airway inflammation and excessive mucus
production. Many cell types are involved in the patho-
physiology of allergic airway inflammation including
eosinophils, mast cells and lymphocytes. Neutrophils are
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also associated with asthma, and it has been shown that
patients with acute [1] or persistent asthma [2] have
increased neutrophil levels compared with controls. In
some cases, neutrophil levels instead of eosinophil levels
have been shown to more closely correlate with airway
obstruction and the severity of asthma [3]. In our
murine model of German cockroach (GC) feces
(frass)-mediated allergic airway inflammation, we find sig-
nificantly increased levels of neutrophils in the bronchoal-
veolar lavage (BAL) fluid [4,5]. Others have shown an
early and transient increase of neutrophils into the airways
following allergen exposure in humans and OVA challenge
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in mice [6]. Considering the fact that neutrophils play an
immediate role in host defense, it seems reasonable that
they may be poised to control the events leading up to the
generation of adaptive immunity.

We have recently shown an early and substantial in-
crease in airway neutrophilia following a single exposure
to the allergen, GC frass [7]. GC frass contains
serine proteases that activate protease-activated receptor
(PAR)-2 on a variety of cells including human bronchial
epithelial cells [8] mouse tracheal epithelial cells [9] and al-
veolar macrophages [10]. PAR-2 is a G-coupled protein re-
ceptor that is activated upon cleavage by a number of
extracellular proteases. This allows the protease to signal
directly to cells via the cleavage and activation of the recep-
tors on the cell surface. PAR-2 is expressed by many cells
in the lung and has been implicated in mediating allergic
airway inflammation [4]. We have recently shown that air-
way neutrophilia is induced following a single exposure to
GC frass, and is partially dependent on the activation of
PAR-2 [10]. PAR-2 has been shown to be expressed on
human neutrophils [11], however the importance of PAR-2
in the activation of neutrophils in the airways following
allergen exposure is currently unknown. Since neutro-
phils are poised to regulate the innate and adaptive im-
mune response, we queried the expression of PAR-2 on
airway neutrophils following allergen exposure, and the
importance of PAR-2 activation in the context of the in-
nate immune response to allergen exposure. Our find-
ings suggest that there may be a defect in neutrophil
recruitment into the airway spaces in PAR-2-deficient
mice. In addition, PAR-2 does not play a role in aller-
gen uptake or co-stimulatory molecule expression on
the neutrophil, but does play an important role in the
regulation of neutrophil-derived TNFa production.

Methods

German cockroach frass

The fecal remnants (frass) from one cage of German
cockroaches were transferred to a sterile container and
stored at 4°C. GC frass was resuspended in endotoxin-
free double-distilled water (2 h at 4°C while rocking).
Extracts were centrifuged to remove debris (10,000 g
for 10 min at 4°C), supernatants harvested, and total
protein was measured using the Bio-Rad Protein Assay
Dye (Bio-Rad, Hercules, CA). GC frass was frozen in
aliquots for use throughout the entire study. AlexaFluor-
405 (Invitrogen, Carlsbad, CA) labeled GC frass (AF405-
GC frass) was made according to manufacturers’
specifications.

Animals and GC frass exposure

BALB/c and PAR-2-deficient mice were obtained from
Jackson Laboratory (Bar Harbor, ME). PAR-2-C57Bl/6
mice were backcrossed for 10 generations onto the

Page 2 of 9

BALB/c background [4]. A single exposure to PBS or
GC frass was followed by a lethal dose of sodium pentobar-
bital 20 h later. AlexaFluor-405 (Invitrogen, Carlsbad CA)
labeled GC frass (AF405-GC frass) was made accord-
ing to manufacturers’ specifications and was used to
expose mice to a trackable antigen. These studies
were approved by the Cincinnati Children’s Hospital
Medical Center Institutional Animal Care and Use
Committee.

Differential cell count and BALF ELISAs

Following PBS or allergen exposure, lungs were lavaged
with Hanks balanced salt solution without calcium or
magnesium. The lavage fluid was centrifuged (300 g for
10 min at 4°C), and the supernatant was removed. The
cell pellet was resuspended in 1 ml of 10% fetal bovine
serum in PBS. Total cell numbers were counted on a
hemocytometer and 200 pl of the resusupended bronch-
oalveolar lavage (BAL) cells were centrifuged onto a
microscope slide using the Cytospin II centrifuge
(Shandon Thermo, Waltham, MA) for 10 min at 64 g
at room temp. Once dried, cells were stained with
Diff-Quick (Thermo Electron, Pittsburgh, PA) solu-
tion for differential cell staining. The BAL fluid
(BALF) was analyzed for KC and macrophage inflam-
matory protein (MIP)-2 by ELISA (R&D Systems,
Minneapolis, MN).

Flow cytometry

Following exposure, whole mouse lungs were diced and
placed in RPMI 1640 containing Liberase CI (0.5 mg/ml;
Roche Diagnostics, Indianapolis, IN) and DNase I
(0.5 mg/ml; Sigma, St. Louis MO) at 37°C for 45 min.
The tissue was forced through a 70-micron cell strainer,
and red blood cells were lysed with ACK lysis buffer
(Invitrogen, Carlsbad, CA). Cells were washed with
RPMI containing 10% FBS, counted and 5x 10° cells
were used for staining. Staining reactions were per-
formed at 4°C following incubation with Fc block (mAb
2.4 G2) for 30 min. Neutrophils (CD11c+, CD11b+, Grl
+) were quantified using anti-CD11c-APC (HL3), anti-
CD11b-PE-Cy7 (M1/70), and anti Gr-1-APC-Cy7(RB6-
8C5). Co-stimulatory molecule expression was examined
using PE-conjugated mAbs to CD86 (GL1), CD80 (16-
10A1), and MHC class II (I-A/I-E). PAR-2 expression
was examined using a PE-conjugated mAb to PAR-2.
Dead cells were excluded using 7-AAD. All antibodies
were purchased from eBioscience (San Diego, CA), with
the exception of the PAR-2 mAb (Santa Cruz, Santa
Cruz, CA). Data were acquired with an LSRII flow cyt-
ometer (BD Biosciences, San Jose, CA). Spectral over-
lap was compensated using the FACSDiVa software
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(BD Biosciences) and analyzed using FlowJo software
(Treestar Inc, Ashland, OR).

Assessment of neutrophil-derived cytokine expression
This was performed two ways. First, whole lungs from
untreated wild-type or PAR-2-deficient mice were iso-
lated and single lung cell suspensions were made by in-
cubating the minced lungs in Liberase/DNase I as
described for flow cytometry. Resuspended cells were
layered onto a three-step Percoll gradient (52, 64, and
72%) and centrifuged (300 g x for 30 min at room temp).
Neutrophils contained in the bottom layer (64-72%)
were collected, counted and plated as previously shown
[7]. Wild type and PAR-2-/- neutrophils (1 x 10° cells
per well) were treated ex vivo with PBS or GC frass
(1 pg/ml) for 18 h. Cell supernatants were isolated, clari-
fied and analyzed by ELISA. Second, groups of wild type
and PAR-2-/- mice were treated with a single exposure
of GC frass (40 pg/40 pl). 18 h later, BAL fluid was har-
vested and neutrophils were isolated using the Percoll
gradient as indicated above. Cells (5 x 10°) were incu-
bated for an additional 18 h to allow for cytokine release,
but there was no further treatment of these cells. There
were no mice treated with PBS in this case because there
would not be enough neutrophils in the BAL fluid fol-
lowing this treatment. In all cases, supernatants were
analyzed for TNFa production by ELISA (R&D Systems,
Minneapolis, MN).

Statistical analysis

When applicable, statistical significance was assessed by
Students t-test or one-way analysis of variance (ANOVA).
Differences identified by ANOVA were pinpointed by
Student-Newman-Keuls’ multiple range test using Sigma-
Stat software.

Results

GC frass induced neutrophil recruitment into the lung

To confirm that a single exposure to GC frass induced
airway neutrophilia, mice were administered an intratra-
cheal instillation of GC frass and 18 h later, BAL fluid
was harvested. We found that a single exposure to GC
frass induced significant neutrophilia in the lungs of
wild-type mice, there was considerably less neutrophilia
in the BAL fluid from PAR-2-deficient mice (Figure 1A).
To determine the level of neutrophils in the whole lung,
we administered GC frass and harvested the lungs 18 h
later for flow cytometry. Compared to PBS-treated mice,
GC frass exposure increased the overall number of neu-
trophils in the lungs of both wild type and PAR-2-
deficient mice. The level of recruitment of neutrophils
into the lungs of PAR-2-deficient mice was lower than in
wild type mice (Figure 1B). We have previously shown
that PAR-2-deficient mice had decreased release of KC,
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a potent neutrophil chemoattractant following GC frass
exposure [10]. Since MIP-2 is also chemotactic for neu-
trophils, we asked whether GC frass increased MIP-2 ex-
pression and if this was regulated by PAR-2 expression.
Interestingly, while GC frass exposure increased MIP-2
expression (119.5+8.3 ng/ml following GC frass treat-
ment compared to PBS-treated 62.1+2.6 ng/ml,
p<0.001 n=9-12 mice per group), there was no differ-
ence in MIP-2 levels in PAR-2-deficient mice following
GC frass treatment (120.7 £ 9.6 ng/ml, p=0.9). Levels of
MIP-2 in PAR-2-deficient mice with PBS exposure
(59.6 £ 1.4 ng/ml) were also comparable to wild type.
These data suggest that neutrophil recruitment into the
airways of mice is partially dependent on the presence of
PAR-2, but may also be regulated by the reduced levels
of KC production in the PAR-2-deficient mice.

Regulation of PAR-2 expression on pulmonary

neutrophils and uptake of allergen

To determine if pulmonary neutrophils expressed PAR-2
and if these levels were regulated by allergen exposure,
we performed a single intratracheal instillation of GC
frass into naive mice and harvested the lungs 20 h later.
The lungs were digested and analyzed for PAR-2 expres-
sion by flow cytometry. In Figure 2A, a histogram repre-
sents the increase in PAR-2 levels in GC frass-treated
pulmonary neutrophils compared to PBS treated cells.
PAR-2 MFI on pulmonary neutrophils (Figure 2B) and
PAR-2-positive neutrophils (Figure 2C) are also increased
following GC frass treatment. Next, to determine if PAR-2
expression played a role in the uptake of GC frass, we
exposed mice to a single intratracheal instillation of
AF405-labeled GC frass and harvested the lungs 20 h later
for flow cytometry. Gating on AF405-positive neutrophils,
we found that wild type and PAR-2-deficient neutrophils
had similar levels of AF405-positive neutrophils (Figure 3),
suggesting that PAR-2 did not play a role in uptake of al-
lergen in the lungs. In fact, only a small proportion of neu-
trophils had taken up AF405 at this time point. Together
these data suggest that allergen exposure can upregulate
the expression of PAR-2 on primary pulmonary neutro-
phils, but PAR-2 expression does not regulate allergen up-
take in neutrophils.

Activation of pulmonary neutrophils following GC frass
exposure in vivo

We asked whether levels of co-stimulatory molecules
expressed on neutrophils were altered following GC
frass treatment. Neutrophils express CD80, CD86, and
MHC class II [12], all of which are important for activa-
tion of T cells. We measured the levels of CD80, CD86
and MHCII on pulmonary neutrophils following a single
exposure to GC frass. We found that in vivo exposure to
GC frass resulted in increased expression of these co-
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Figure 1 Neutrophil recruitment into the lung and BAL fluid following allergen challenge. Naive BALB/c mice were administered a single
intratracheal instillation of PBS or GC frass (40 pug/40 pl) and 20 h later, mice were either lavaged to isolate BAL cells or whole lungs were
digested and analyzed for neutrophil content by flow cytometry. A. BAL fluid was harvested and differential cell counts performed. Data
represent 8 mice per group and are expressed as total cell number mean + SEM. Statistical significance was determined by ANOVA (*p < 0.001).
B. Cells were dissociated from whole lungs and stained for flow cytometry analysis. CD11c + cells were subsequently analyzed for CD11b and Gr1
expression. Data are from a single mouse per group but are representative of 6 mice in each group.

stimulatory molecules, both MFI and frequency of par-
ent on wild type neutrophils (Figure 4). There was no
difference in the increased levels of CD86, CD80, or
MHCII between wild type and PAR-2-deficient mice,
suggesting that allergen-associated proteases do not play
a role in co-stimulatory molecule upregulation following
allergen exposure.

Ability of pulmonary neutrophils to respond to GC frass
We have previously shown that TNFa and IL-6 cytokine
levels are significantly decreased in the BAL fluid follow-
ing a single exposure of GC frass in PAR-2-deficient
mice compared to wild type mice [10]. We wanted to
determine if neutrophil-derived cytokine production
from wild type and PAR-2-deficient mice was altered.
To begin our investigation, we isolated lungs from naive
BALB/c and PAR-2-deficient mice and isolated the neu-
trophils on a Percoll gradient. We cultured equal num-
bers of neutrophils and treated these cells ex vivo with
GC frass. We found that frass induced significantly more
TNFa from neutrophils isolated from lungs of wild type
mice compared to PAR-2-deficient mice (Figure 5A). To
confirm cytokine production in pulmonary neutrophils
in response to GC frass, we performed a single intratra-
cheal instillation of GC frass into wild type and PAR-2-
deficient mice and harvested the neutrophils from the
BAL fluid by Percoll gradient. We then assayed these cells
directly for cytokine production. We found a greater
amount of TNFa production from BAL-derived neutro-
phils from wild type mice than from PAR-2-deficient mice
(Figure 5B). Together these data show that TNFa produc-
tion from neutrophils is mediated in part by the activation
of PAR-2, and suggests a role for PAR-2 activation in initi-
ating the innate immune response.

Discussion

In this report, we investigated the role of neutrophils in
the innate immune response to allergen, specifically
related to the role of allergen-derived proteases and
PAR-2. Our results suggest that allergen exposure upre-
gulated PAR-2 on pulmonary neutrophils and that PAR-
2 activation resulted in neutrophil-derived TNFua release.
We have previously reported that a very early innate im-
mune response occurred following allergen exposure.
Within one hour, a significant release of TNFa in the
BAL fluid is detected [13] and while this is maximal at

6 h post exposure, levels remain significantly higher than
PBS controls up to 24 h later [7]. Neutrophil-derived
TNFa production is important as we have shown that
depletion of neutrophils prior to allergen exposure abol-
ished GC frass-induced TNFa production when assessed
18 h later [7]. To our knowledge, this is the first study
to address the role of cytokine production from PAR-2-
deficient pulmonary neutrophils. Expression of PAR-2
was important for maximal expression of TNFa from
pulmonary neutrophils. While we did not directly study
this, it is likely that PAR-2-mediated TNFa production
from neutrophils is mediated by nuclear factor (NF)-xB
and extracellular regulated kinase (ERK). We have re-
cently demonstrated that activation of PAR-2 regulated
TNFa production by NF-«B and ERK, but not p38, in al-
veolar macrophages [10]. Other reports have also
shown that PAR-2 activation leads to increased ERK
and IkBa/NF-kB signal transduction pathway activa-
tion [14-16]. In our study, we report that the major
consequence of PAR-2 activation on neutrophils is the
release of TNF« in the airways.

Vergnolle et. al. showed that PAR-2 contributed to
the early events of inflammation by playing a crucial
role in leukocyte recruitment and extravasation [17].
In that study, selective activation of PAR-2 signifi-
cantly increased leukocyte rolling and leukocyte ad-
hesion to the endothelium. A subsequent study
showed that leukocyte rolling was significantly lower
in PAR-2-deficient mice compared to wild type mice
in a model of acute inflammation [18]. In this report,
we found that PAR-2-deficient mice were less respon-
sive to GC frass in their ability to recruit neutrophils
into the lungs and BAL fluid; however while this was
statistically significant, the levels of neutrophils in
the PAR-2-deficient mice compared to wild type were
not completely repressed. While it is currently un-
clear from the previous studies [17,18] whether PAR-
2 expression was crucial on the leukocyte or the
endothelium, it is clear that PAR-2-deficient mice
have a somewhat altered ability of neutrophil recruit-
ment into the lungs and airways following allergen
exposure. It is also important to note that in the
PAR-2-deficient mice, we have previously reported a
decrease in the neutrophil chemoattractant KC in the
BAL fluid of mice following allergen exposure [10],
which could also play an important role in neutrophil
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Figure 2 GC frass increased PAR-2 expression on pulmonary
neutrophils. Lungs from PBS or GC frass-treated mice were
harvested 20 h post exposure and stained for flow cytometric
analysis of PAR-2 expression. A. Representative histogram showing
PAR-2 expression on gated pulmonary neutrophils from PBS-treated
(solid line) or GC frass-treated (broken line) mice. Solid grey
histogram depicts staining with isotype control antibody. B. Average
PAR-2 MFI. C. Percentage of PAR-2-positive neutrophils. In both
cases (B + (), data are expressed as mean + SEM (n=8 mice per
group) and statistical significance was determined by Student's t-test
(*p<0.001).
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Figure 3 PAR-2 expression does not alter allergen uptake in
pulmonary neutrophils. AF405-labeled GC frass was instilled in the
airways of wild type and PAR-2-deficient mice and 20 h post
exposure, lungs were isolated and stained for flow cytometry. The
percentage of AF405-positive pulmonary neutrophils (gated on
CD11c+, CD11b+, Gr1+ cells) in the lung are shown and the data
are expressed as the mean + SEM (n=8 mice per group).

recruitment into the lung. These data are similar to
those presented by Williams et al. [19] who found that
KC levels in the BALF of PAR-2 mice were significantly
lower following LPS than in wild type mice. Interest-
ingly we found that MIP-2 release was unaltered in the
PAR-2-deficient mice 18 h post allergen exposure. A re-
cent report found an early and transient regulation of
MIP-2, where MIP-2 release was reached a peak at 3 hr
post inhalation and reached basal levels by 12 hr. In that
study, the presence of PAR-2 regulated MIP-2 expres-
sion only at 3 hr post LPS exposure in the lung hom-
ogenate but not in the BALF [19]. It is currently unclear
of the role MIP-2 would play in mediating neutrophil
recruitment into the airways. Our current study cannot
clearly identify if PAR-2 plays a role in extravasation of
the neutrophil or the chemoattraction of neutrophils
into the lung and thus further studies are required to
answer this question.

Recently it was shown that neutrophils may act as pro-
fessional antigen-presenting cells (APC) by inducing
their expression of MHC class II and co-stimulatory
molecules CD80 and CD86 and by processing and pre-
senting antigen to trigger T-cell activation [12]. Based
on that study, we investigated the levels of MHC class II,
CD80 and CD86 on pulmonary neutrophils following a
single exposure to GC frass and found that the lack of
PAR-2 had no effect on the expression of these mole-
cules. We have recently reported that on pulmonary
mDCs, the expression of CD80 and CD86 was somewhat
dependent on the presence of a functional PAR-2 [20].
In PAR-2-deficient mDCs, the expression of these co-
stimulatory molecules were slightly, but significantly
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Figure 5 TNFa release is diminished in pulmonary neutrophils
from PAR-2-deficient mice compared to wild type mice. A.
Whole lungs from naive BALB/c and PAR-2 mice were dissociated
and neutrophils were isolated by Percoll gradient. Neutrophils (1 x
10°) were then treated ex vivo with PBS or GC frass and 18 h later,
the supernatants were harvested, clarified, and analyzed for TNFa
levels by ELISA. Data are expressed as means + SEM (n=3 separate
experiments run in duplicate) and statistical significance was
analyzed by ANOVA (*p <0.001). B. BALB/c and PAR-2-deficient mice
were administered a single intratracheal instillation of GC frass and
18 h later BAL fluid was harvested. Neutrophils (5 x 10°) were
isolated by Percoll gradient and were cultured without additional
treatment for 6 h. Supernatants were then harvested, clarified and
analyzed for TNFa levels by ELISA. Data are expressed as means +
SEM (n=5 mice per group) and statistical significance was analyzed
by Student’s t-test (*p=0.002).

decreased. PAR-2 activation has been shown to enhance
the maturation of bone marrow-derived DCs [21] sug-
gesting the potential role for PAR-2 activation on the de-
velopment of DCs as APC. It is still not completely clear
what the overall relevance of neutrophils as APC has on
the initiation of allergic airway inflammation, and further
studies are needed in this area. However, in this report, we
find that PAR-2 expression did not appear to be important
for allergen uptake or phagocytosis of the allergen, nor did
it appear to play a role in co-stimulatory molecule regula-
tion on the neutrophil.
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Many cells are likely involved in the initiation of the in-
nate immune response, including the neutrophil, which
we have consistently seen in high numbers following aller-
gen exposure [7,10,13]. It is still unclear what the overall
role of the neutrophil is in the initiation of allergic airway
inflammation. In a guinea pig model of OVA-induced
asthma, removal of neutrophils was found to decrease
mucus production by preventing goblet cell degranulation
[22]. Neutrophils also release interleukin (IL)-8, growth-
related oncogene o (GRO-a), macrophage inflammatory
protein 1-a (MIP-1a) and MIP-1p [23]. IL-8 and GRO-«
act to recruit additional neutrophils, while MIP-1a and
MIP-1p are chemoattactive for immature DCs and T cells.
Thus, the neutrophil can play a direct role in altering the
cellular milieu following stimulation.

We found that pulmonary neutrophils release a sub-
stantial amount of TNFa following allergen exposure.
We showed this in two ways, first by isolating neutro-
phils from whole lung and treating them ex vivo with al-
lergen, and second by directly isolating pulmonary
neutrophils from BAL fluid following allergen exposure.
The second method is more physiologically relevant in
that we identified the amount of TNFa release from
airway-derived neutrophils stimulated with GC frass
in vivo. For this experiment, we counted the cells and
cultured them in equal quantities, so it is likely that
since there are less neutrophils in the airways of PAR-2
mice, the overall amount of neutrophil-derived TNFa in
the airways will be even less. In a previous study, we found
higher levels of TNFa in the BAL fluid of mice following al-
lergen exposure so it is likely that other lung cells are also
involved in TNFa release. Recently, TNFa was shown to
enhance TGF-B1-driven epithelial-to-mesenchymal transi-
tion suggesting that TNFa could play a crucial role in the
reprogramming of epithelial cell responses [24]. In patients
with asthma, increased TNFa levels have been detected in
the airways [25], and there is some evidence that increased
airway TNFa may play a role in refractory asthma [26]. It is
unclear what the major cellular source of this TNF« is,
however there are a subset of asthma patients with refrac-
tory asthma that have significantly increased levels of neu-
trophils [27]. What is still unclear is the direct role of
neutrophil-derived TNFa in modulating allergic airway
inflammation.

The importance of PAR-2 in modulating allergic airway
inflammation has recently been shown. PAR-2 mice exhibit
decreased airway hyperresponsiveness, serum IgE and Th2
cytokine production following allergen sensitization and
challenge compared to wild type controls [4,28]. Our col-
lective data has shown an important role for GC frass-
associated proteases and PAR-2 in modulating cytokine
production from alveolar macrophages [10], airway epithe-
lium [9], myeloid dendritic cells [20], and in the current
study, neutrophils; all of which are important activators of
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the innate immune response. To our knowledge, this is the
first report investigating the role of PAR-2 in mediating the
activation of airway neutrophils following exposure to an
allergen.
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AF: Alexa Fluor; BAL: Bronchoalveolar lavage; CD: Cluster of differentiation;
GC: German cockroach; MFI: Mean fluorescence intensity; MHC: Major
histocompatibility complex; NF-kB: Nuclear factor kB; PAR: Protease activated
receptor; TNF: Tumor necrosis factor.
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