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Abstract

Innate inflammation is a hallmark of both experimental and human atherosclerosis. The predominant innate
immune cell in the atherosclerotic plaque is the monocyte-macrophage. The behaviour of this cell type within the
plaque is heterogeneous and depends on the recruitment of diverse monocyte subsets. Furthermore, the plaque
microenvironment offers polarisation and activation signals which impact on phenotype. Microenvironmental
signals are sensed through pattern recognition receptors, including toll-like and NOD-like receptors thus dictating
macrophage behaviour and outcome in atherosclerosis. Recently cholesterol crystals and modified lipoproteins
have been recognised as able to directly engage these pattern recognition receptors. The convergent role of such
pathways in terms of macrophage activation is discussed in this review.
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Introduction
Atherothrombotic vascular disease is quickly becoming
the leading cause of mortality worldwide, accounting for
a fifth of all deaths [1]. The manifestations of the disease
are often sudden and dramatic, including myocardial
infarction and sudden death. Cerebrovascular athero-
thrombosis is responsible for ischaemic stroke, a major
source of disability and dependence, and represents a
rising health-economic burden [2].
Progress has been made in refining our understanding

of the process of inflammation which underlies athero-
sclerosis since the early descriptions by Rudolf Virchow
during the 19th century [3,4] and subsequently Russell
Ross in the late 1990s [5-8]. The development of an
atherosclerotic plaque begins with the recruitment of
blood-borne inflammatory cells at sites of lipid deposi-
tion [9] or arterial injury [5]. Local rheological factors,
such as low and oscillatory (with vortices) blood-to-wall
shear stress dictate the location of atherosclerotic pla-
ques to characteristic points along the vasculature
[10,11].

Atherosclerosis shares features with diseases caused
by chronic inflammation [7]. Inflammation is intrinsi-
cally linked with disease activity, as the numbers of
monocyte-macrophages infiltrating the plaque [12] and
their location at plaque rupture-sensitive sites (such as
the fibrous cap and areas of erosion [13,14]) is related
to plaque vulnerability. Moreover, lymphocyte abun-
dance and their activation markers relate to plaque
activity [13]. Macrophage differentiation is acknowl-
edged as critical for the development of atherosclerosis
[15]. The intimate relationship between atherosclerosis
and inflammation is further exemplified by the involve-
ment of cytokines and chemokines at all stages of the
process of atherosclerosis (reviewed in detail by [16]).
The extent of the inflammatory infiltrates and their
strategic location within the protective fibrous cap is
associated with plaque rupture and/or thrombosis [17].
Adventitial inflammation has also been described [18],
and is linked with an expansion of the adventitial vasa
vasorum in unstable atherosclerosis [19]. The inflamma-
tory nature of atherosclerosis is supported by the asso-
ciation between circulating plasma inflammatory
markers, particularly C-reactive protein, with cardiovas-
cular outcomes, even in the absence of dyslipidaemia
[6]. Further evidence for a link between systemic
inflammation and cardiovascular disease is the increased
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incidence of cardiovascular events in chronic inflamma-
tory conditions, such as inflammatory arthritis and sys-
temic lupus erythematosus [7,8]. The expanding
knowledge base regarding inflammation in atherosclero-
sis has resulted in a keen interest in targeted therapeu-
tics and functional imaging tools for the high-risk
atherosclerotic plaque [20].

Innate immunity is a key player in atherosclerosis
How is inflammation established and maintained within
an atherosclerotic plaque? Inflammation in physiological
conditions is a self-limiting ancient protective mechan-
ism that defends the host from invading pathogens. It
relies on two arms: innate immunity and adaptive
immunity. Innate immunity is activated immediately
upon encounter with the pathogen and is executed pri-
marily by myeloid cells with the participation of some
“innate” lymphocyte sub-populations. Adaptive immu-
nity is a second line of defence that is based upon the
generation of antigen-specific recognition apparatus at
cellular (T cell receptor) and humoral (antibody) levels.
In the past decade it has become apparent that the

innate arm of the immune inflammatory response is not
merely a concoction of non-specific responses and pha-
gocytosis. Rather it is the main orchestrator of the sub-
sequent adaptive responses and is able to sense
pathogen associated molecular patterns (PAMPs) with a
specificity which was previously unsuspected. In inflam-
matory conditions, including atherosclerosis, the
immune inflammatory apparatus is chronically activated,
either due to the persistence of pro-inflammatory sti-
muli or due to the failure of regulatory mechanisms that
should facilitate resolution. Significant progress has been
made in the field linking innate immune sensors to the
recognition of cholesterol [21] and modified lipoproteins
[22-24]. Thus diverse innate immune signalling path-
ways have been seen to cooperate to induce and main-
tain inflammation upon exposure to exogenous and,
importantly, endogenous molecular patterns [21,25].
The most abundant cell types within the atherosclero-

tic plaque are innate immune cells, such as monocyte-
macrophages, dendritic cells (DCs) and mast cells.
Monocytes-macrophages came to the forefront of
research owing to new awareness that they may repre-
sent a more heterogeneous and phenotypically plastic
population than previously anticipated. In this review we
focus on the role of macrophage activation and phenoty-
pic polarisation in lesion formation and vulnerability.

Macrophage heterogeneity in atherosclerosis
Macrophages are a heterogeneous population of cells
that adapt in response to a variety of micro-environ-
mental signals; their phenotype is very much a function
of environmental cues [26,27]. In a nomenclature

mirroring Th1 and Th2 polarisation, macrophages are
usually defined as M1 or M2 [28]. Classically activated
(M1) macrophages were the first to be defined [29,30]
as pro-inflammatory. Alternatively activated (M2)
macrophages have been originally characterised in the
context of Th2-type immune responses [29]. Subsets of
M2-like macrophages have been later found to contri-
bute to wound healing and regulation of inflammatory
processes [31]. Characteristic cytokine and chemokine
signatures pertaining to human monocyte-to-macro-
phage differentiation and M1/M2 macrophage polarisa-
tion (Table 1) have been described [28,32].
Macrophage phenotypic polarisation may have a role

in the fate of an atherosclerotic plaque. The plaque is an
environment with a strong skew towards Th1 lymphocy-
tic responses, resulting in high levels of IFNg [33,34]
which could in theory privilege M1-type macrophage
polarisation. However, studies thus far have demon-
strated macrophage heterogeneity within atherosclerosis,
supporting that both M1 and M2 macrophages are pre-
sent in human and murine atherosclerotic lesions. In an
ApoE-/- murine model of atherosclerosis, early lesions
were seen to be infiltrated by M2 (arginase I+) macro-
phages [35]. As lesions progressed a phenotypic switch
was observed, with an eventual predominance of M1
(arginase II+) macrophages. Upon exposure to the oxi-
dised phospholipid 1-palmitoyl-2-arachidonoyl-sn-3-
phosphorylcholine (oxPAPC), murine macrophages
adopted a previously undescribed phenotype (Figure 1)
[36]. A reduction in the expression of genes characteris-
tic of both M1 and M2, coupled with an up-regulation
of a unique redox gene signature that includes haemox-
ygenase 1, was observed. This population, termed Mox
macrophages, are nuclear factor erythroid 2-like 2
(Nrf2)-dependent and have been shown to comprise
approximately 30% of all macrophages in advanced
atherosclerotic lesions of LDLR-/- mice [36]. A variety of
subtypes have been described which are considered to
fall under the umbrella of alternatively activated M2
macrophages (reviewed in [31,37]). An example of this
occurs with administration of IL33 (which is functionally
atheroprotective [38]) to genetically obese diabetic (ob/
ob) mice, resulting in increased production of Th2 cyto-
kines and polarisation of adipose tissue macrophages to
a CD206+ M2 phenotype [39].
In human lesions different macrophage phenotypes

exist, and do so in different plaque locations. M2 (CD68
+ CD206+) macrophages were seen to reside in areas
more stable zones of the plaque distant from the lipid
core, with their M1 (CD68+ CCL2+) counterparts dis-
playing a distinct tissue localisation pattern [40]. Subse-
quent work has confirmed this, finding CD68+ CD206+

cells far from the lipid core [41]. CD68+ CD206+ macro-
phages were also seen to contain smaller lipid droplets

Shalhoub et al. Journal of Inflammation 2011, 8:9
http://www.journal-inflammation.com/content/8/1/9

Page 2 of 17



compared to CD68+ CD206- [41]. A subset of M2
macrophages has recently been detected in association
with intraplaque haemorrhage in coronary atheromata
[42]. These macrophages express high levels of CD163
(a scavenger receptor that binds to haemoglobin-hapto-
globin (HbHp) complexes). They also express low levels
of MHC Class II and display low release of the reactive
oxidative species hydrogen peroxide. Expression of
CD163 by peripheral blood monocytes was not shown
to be different between the CD14+ CD16+ and CD14++

CD16- subsets. However, when monocytes were differ-
entiated into macrophages in the presence of HbHp
complexes for 8 days, they matured into a CD163high

HLA-DRlow phenotype similar to the haemorrhage-asso-
ciated macrophages within coronary plaques [42]. Differ-
entiation into this macrophage subtype was dependent
on the expression of CD163 and IL10 during in vitro
blockade experiments. Interestingly, this polarisation
was prevented by the incubation with specific inhibitors
of endolysosomal acidification, such as chloroquine
which is known to interfere with endosomal TLR signal-
ling [42].
Lesion development and stability are not only deter-

mined by the influx and differentiation of inflammatory
cell subsets, but also their ability to act on vascular
extracellular matrix. Importantly, the macrophage sub-
types display a differential expression of matrix

metalloproteinase (MMP) and tissue inhibitor of metal-
loproteinase (TIMP) [43]. In particular, a subset of
lesional foam cell macrophages characterised by a high
expression of MMP14 (membrane type 1 MMP) and a
low expression of TIMP3 were highly invasive and cata-
bolic [44]. Moreover, such expression pattern of
MMP14 and TIMP 3 was associated with markers of
M1 polarisation [44], whilst expression of MMP12 was
associated with an M2-typical down-regulation of argi-
nase I [45]. Thus MMP expression by macrophage sub-
sets is also heterogeneous, further highlighting the
different functionalities of these cells.
The heterogeneity of macrophage phenotypes in the

various studies is an important feature of our current
view of atherosclerosis. Studies assessing multiple mar-
kers in human and murine lesions are needed to map
such degree of heterogeneity. How is such heterogeneity
generated? It is likely to be the result of recruitment of
different monocytes subsets, or stimuli provided by the
plaque microenvironment. Gordon and Martinez have
proposed a four-stage paradigm of macrophage activa-
tion, where differentiation through exposure to growth
factors is the first stage [46]. This stage is followed by
priming (through cytokines, particularly IFNg and IL4),
activation (by TLR or similar), and finally resolution and
repair (mediated by IL10, transforming growth factor
(TGF)-b, nucleotides, glucocorticoids or lipotoxins) [46].

Table 1 Cytokine and chemokine genes, and those of receptors (in italics), known to be differentially transcribed in
human M1 and M2 macrophage in vitro polarisation (Adapted from [28] and [27])

M1 > M2 M2 > M1

CXCL11 Insulin-like growth factor 1

CCL19 CCL23

CXCL10 CCL18

Tumour necrosis factor ligand superfamily, member 2 CCL13

CCL15 Bone morphogenic protein 2

Interleukin 12B Hepatocyte growth factor

Interleukin 15 Fibroblast growth factor 13

Tumour necrosis factor ligand superfamily, member 10 CXCL1

Interleukin 6 Transforming growth factor b receptor II

CCL20 CXCR4

Visfatin Mannose receptor C type 1 (CD206)

Endothelial cell growth factor

CCL1

CCL17

CCL22

CCL13

Transforming growth factor b2
CCR7

Interleukin 2 receptor a chain

Interleukin 15 receptor a chain

Interleukin 7 receptor

CCL2 was upregulated in M-CSF differentiated macrophages in one study [27], whilst relatively increased by GM-CSF in another [28].
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This review will explore the potential mechanisms lead-
ing to macrophage activation and polarisation in
atherosclerosis.

Recruitment of monocyte subsets to
atherosclerotic plaques
In both mice and humans, monocytes comprise 5 to
10% of peripheral blood leukocytes [25]. Two major cir-
culating monocyte subsets have been described in
humans and mice alike, the distinction made on the
basis of size, granularity, and the differential expression
of chemokine receptors and adhesion molecules [47].
The two mouse monocyte sub-populations are repre-
sented approximately equally in murine blood; they are
distinguished based upon their expression of CCR2,
CX3CR1 and Ly6C [48]) [49]. CCR2+ CX3CR1

low Ly6C+

monocytes are termed ‘inflammatory’ monocytes, and
CCR2- CX3CR1

high Ly6C- are referred to as ‘resident’
monocytes [31,47,50].
Similarly to mouse monocytes, human monocytes can

be separated into two groups based upon cell surface
CD14 - a toll-like receptor (TLR) co-receptor sensing
exogenous molecular patterns such as lipopolysaccharide
(LPS) - and CD16 - a member of the family of Fc (Frag-
ment, crystallisable) receptors FcgRIII. In humans, about
90% of monocytes are CD14++ CD16- and termed ‘clas-
sical’ monocytes [50,51]. CD14+ CD16+ monocytes,
which constitute the remaining minority, are referred to
as ‘non-classical’ [52-55] (Table 2).
To date, monocyte phenotype data has centred largely

on the murine system [29]. Similarities between mice
and humans may be accounted for, at least in part, by

M1 M2

iNOS, IL1 α IL1β, TNFα, IL12 
NOS2, CXCL1 CXCL2, CXCL9
CXCL10,CXCL11 

Ym1, FIZZ1, ARG1, CCL22, CCL17
IL1ra, IL1R2, IL10, SR, GR

MOX VEGF, H
O1, 

COX2

IL1
β,N

RF2, 
ARE

VEGF, HO1, COX2 

IL1β,NRF2, ARE

OxPAPC OxP
APC

Host defense Healing

Redox / Antioxidant Activity
Figure 1 Macrophages have classically been described as M1 and M2. These two phenotypes differ substantially with respect to the
expression of macrophage associated genes. More recently, Kadl et al have described a new subset termed MOX macrophages [36]. These are
induced by an environment rich in structurally defined oxidation products such as oxidised 1-palmitoyl-2-arachidonoyl-sn-3-phosphorylcholine
(oxPAPC) and can be induced from an M1 or M2 phenotype. ARE, antioxidant responsive elements; ARG1, arginase 1; CCL, chemokine ligand;
COX2, cyclo-oxygenase 2; CXCL, chemokine CXC motif ligand; FIZZ1, found in inflammatory zone 1; GR, galactose receptor; HO1, heme-
oxygenase 1; IL, interleukin; IL1ra; interleukin 1 receptor antagonist; ILR2, interleukin 1 receptor type II, decoy receptor; iNOS, inducible nitric oxide
synthase; NRF2, nuclear factor erythroid 2-like 2; SR, scavenger receptor; Ym1, chitinase 3-like 3 lectin.
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the expression of surface receptors. For instance, che-
mokine receptors CCR1 and CCR2 are highly expressed
on both CD16- human and Ly6C+ murine monocytes,
and CX3CR1 is increased on CD16+ human and Ly6C-

mouse monocytes [47,56,57] (reviewed in [58]). More
than 130 of these gene expression differences were con-
served between mouse and human monocyte subsets,
with many of these differences also confirmed at the
protein level [59]. A notable difference among these was
the high expression of peroxisome proliferator-activated
receptor g (PPARg, discussed in greater detail below) in
Ly6C- mouse monocytes, but not the proposed CD16+

counterpart [59]. As such, the differences between
mouse and human monocyte subsets may be greater
than had been expected and may be difficult to
reconcile.
Two groups independently reported in 2007 that the

Ly6C+ inflammatory monocyte subset increases its
representation dramatically in the peripheral blood of
the hypercholesterolemic apolipoprotein E (ApoE) defi-
cient mouse on a high-fat diet [56,60]. Conversely,
hypercholesterolemia did not affect Ly6C- monocytes
and also discouraged the conversion of Ly6C+ into
Ly6C- monocytes. Other mechanisms proposed for this
increase in Ly6C+ monocytes during hypercholesterole-
mia include increased proliferation and reduced apopto-
sis [61]. Ly6C+ monocytes are recruited to activated
endothelium and are thought to represent the majority
of infiltrating macrophages within atherosclerotic pla-
ques [60]. Conversely, Ly6C- enter the atherosclerotic
plaque in lower numbers and preferentially express
CD11c upon entry [56]. This differential recruitment
based upon Ly6C expression may condition the macro-
phage phenotype within the plaque, with reports that
Ly6C+ monocytes differentiate into cells that resemble
M1 macrophages and that cells derived from Ly6C-

monocytes exhibit M2 characteristics [62-65].
Chemokine receptors are necessary for monocytes to

traverse the endothelium [56,66] (reviewed in [16]).
CX3CR1

-/- (fractalkine receptor) [67,68], CX3CL1
-/-

(fractalkine) [69] and CCR2-/- [70,71] mice (in the con-
text of low density lipoprotein receptor (LDLR) or ApoE
deficiency) exhibited a reduction in - but not elimina-
tion of - atherosclerosis. Furthermore, deficiency of
CCR5 (the receptor for CCL5, a chemokine also known

as RANTES) in ApoE-/- mice does not appear to be pro-
tective in the early stages of atherosclerosis [72]. Subse-
quently, in a wire injury study also using the ApoE-/-

mouse model, the authors found a significant reduction
in the area neo-intima formation with concurrent CCR5
deficiency, but not with concurrent absence of the alter-
native CCL5 receptor CCR1 [73]. More recently, a mul-
tiple knockout model has reaffirmed the thinking that
CCL2 (MCP1), CCR5 and CX3CR1 play independent
and additive roles in atherogenesis [74]. Combined inhi-
bition of CCL2, CCR5 and CX3CR1 in ApoE-/- mice
results in a 90% reduction in atherosclerosis, which is
related to progressive monocytopaenia [66,74]. However,
chemokine receptor utilisation during recruitment to
atherosclerotic plaques differentiates Ly6C+ and Ly6C-

monocytes. Ly6C+ monocytes are recruited to mouse
atherosclerosis via CCR2, CCR5 and CX3CR1 [61]. Con-
versely, Ly6C- monocytes are recruited less frequently
and through CCR5.
In human atherosclerosis, patients with coronary

artery disease have increased numbers of circulating
CD14+ CD16+ monocytes compared to controls [75].
Furthermore, these patients have raised levels of serum
TNFa [76]. There is, however, data to the contrary with
the finding that inflammatory genes and surface markers
were down-regulated in monocytes of patients with cor-
onary atherosclerosis [77]. Of relevance, CD14+ CD16+

monocytes have also been shown to exhibit pro-inflam-
matory and pro-atherosclerotic activity in a population
of elderly human subjects. These activated monocytes
exhibited increased interaction with endothelium and
had higher expression of chemokine receptors [78].
Other studies have suggested that the bone marrow is
the source of these monocytes [79,80].

Macrophage differentiation in atherosclerosis
Early work relating to the effect of the colony stimulat-
ing factors (CSFs) on macrophage phenotype was under-
taken by Hamilton and colleagues [81,82]. A variety of
groups have generated data using monocytes differen-
tiated in vitro, via exposure to either M-CSF or GM-
CSF [82,83]. In vitro differentiation with M-CSF results
in a macrophage phenotype close to that of M2 [28].
GM-CSF plays a role in the induction of a pro-inflam-
matory macrophage phenotype that resembles M1

Table 2 A comparison of human and murine monocyte subsets, highlighting differences in surface receptor
phenotypes

Human Mouse

Classical/Inflammatory CD14++ CD16- [195,196]
(>90%)

Ly6C+ CCR2+ CD62L+ CX3CR1
low [47,59] (~50%)

Non-Classical/Resident CD14+ CD16+ [195,196]
(<10%)

Ly6C- CCR2- CD62L- CX3CR1
high [47,59] (~50%)

The approximate abundance in peripheral blood is shown in brackets, however this may not reflect the proportions in other sites such as the spleen.
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polarisation, proficiently producing inflammatory cyto-
kines such as TNFa and IL6, and being involved in tis-
sue destruction [28].
In further murine studies, both M-CSF and GM-CSF

have been shown to be important in plaque develop-
ment. Smith et al studied ApoE-/- mice crossbred with
the osteopetrotic mutation of the M-CSF gene. These
mice were fed a low-fat chow diet with the double
mutants exhibiting significantly smaller proximal aortic
lesions, at an earlier stage of progression and with fewer
macrophages as compared with their control ApoE-/- lit-
termates [84]. The production of GM-CSF from smooth
muscle cells leads to the activation of monocytes during
atherogenesis [85]. In another study using the hypercho-
lesterolaemic ApoE-/- mouse, animals on a high-fat diet
were injected with doses of 10 μg/kg GM-CSF or G-CSF
daily for 5 days on alternating weeks for a total of 20
doses during an 8 week period, finding that both G-CSF
and GM-CSF treatment resulted in increased athero-
sclerotic lesion extent [86]. LDLR-null mice have been
employed in a study which combined 5-bromo-2’-deox-
yuridine pulse labelling with en face immunoconfocal
microscopy to demonstrate that systemic injection of
GM-CSF markedly increased intimal cell proliferation,
whilst functional GM-CSF blockade inhibited prolifera-
tion [87].
In a key study, Waldo and colleagues examined human

macrophages differentiated in vitro for 7 days with either
M-CSF or GM-CSF [27]. They characterised gene expres-
sion, surface phenotype, cytokine production and lipid
handling in these two macrophage groups. With regards
to gene expression, they demonstrated differential expres-
sion of genes of inflammation (Table 1) and cholesterol
homeostasis between the two groups, including that GM-
CSF macrophages exhibited a ten-fold increased gene
expression of PPARg. M-CSF differentiated macrophages
spontaneously accumulated cholesterol when incubated
with unmodified low density lipoprotein (LDL), whilst
GM-CSF differentiated macrophages took up similar levels
only when exposed to protein kinase C. Macrophages dif-
ferentiated with M-CSF were shown by immunofluore-
sence to express CD14 (CD68+ CD14+), whilst GM-CSF
differentiated macrophages were CD68+ CD14-. Interest-
ingly, human coronary plaque samples were shown to
contain predominantly CD68+ CD14+ [27].

Priming of macrophages in the atherosclerotic plaque
Macrophages are M1-primed by exposure to interferon
(IFN)-g [37]. The key role of IFNg [88] has been con-
firmed in experimental atherosclerosis whereby ApoE-/-

IFNg receptor-/- mice displayed a substantial reduction
in lesion size compared to ApoE-/- [89]. This reduction
was manifest alongside a reduced level of macrophages
and T lymphocytes within the lesions. Furthermore,

murine cardiac allografts sited in IFNg-/- recipients had
reduced transplant atherosclerosis [90].
Alternative M2 polarisation has originally been

described as the result of exposure to interleukin (IL4)
[28,40,58,91]. M2 macrophages have a notable role in
catabasis, the process inflammation resolution which
when fails results in progression of atherosclerosis [92].
Wound healing macrophages, concerned primarily

with tissue repair, are similar to the alternatively acti-
vated (M2) macrophages which have been described
above. Wound healing macrophages establish their phe-
notype upon exposure to IL4 and/or IL13 from Th2
cells and granulocytes. IL4 is an early innate signal
released during tissue injury, stimulating macrophage
arginase to convert arginine to ornithine which is a step
in extra-cellular matrix collagen production [93]. This
ornithine is a precursor for polyamines which have an
effect on cytokine production, affording wound healing
macrophages regulatory capabilities [94].
Regulatory macrophages, with anti-inflammatory activ-

ity, are most reliably defined and identified through IL10
levels or IL10/IL12 ratio (as they also downregulate IL12
[95]). These develop in response to a large number of
stimuli, including IL10 produced by regulatory T cells,
TGFb [96], and glucocorticoids. The latter attenuate
macrophage-mediated inflammation through inhibition
of pro-inflammatory cytokine gene transcription [97],
nonetheless capacity for phagocytosis does not appear to
be impaired by glucocorticoids [98]. Unlike wound-heal-
ing macrophages, regulatory macrophages do not contri-
bute to the production of extracellular matrix.

Macrophage activation pathways in atherosclerosis
Following the priming stage, activation of macrophages
is reliant upon ligation of pattern recognition receptors
(PRR) [29,99], namely nucleotide-binding oligomerisa-
tion domain (NOD)-like receptors (NLRs) and TLRs.
Toll-like receptor signalling
TLRs are the most well-characterised PRRs, of which at
least ten have been identified in humans [100]. TLRs
may be found on the cell surface, as in the case of TLRs
1, 2, 4, 5 and 6, or reside intracellularly [101,102]. TLRs
are key activators of monocytes and macrophages.
Upon exposure to ligand, TLRs couple to signalling

adaptors to induces two major downstream signalling
pathways: the nuclear factor kappa B (NF�B) (Figure 2)
and the interferon response factor (IRF) pathways.
MyD88 is a universal adapter protein that carries signal-
ling through all TLRs, except TLR3, leading to the acti-
vation of NF�B. MyD88-dependent signalling relies on
recruitment of Mal (MyD88-adaptor like), which leads
to the recruitment of the IL1 receptor-associated kinase
(IRAK). Phosphorylation of IRAK signals to tumour-
necrosis-factor-receptor-associated factor 6 (TRAF6).
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The subsequent nuclear translocation of NF�B and
translation of inflammatory cytokines is driven by phos-
phorylation of the I�B kinase (IKK) complex upon acti-
vation of TRAF6. MyD88-independent signalling is via
TRAM (TRIF-related adaptor molecule) and TRIF (TIR-
domain-containing adaptor protein inducing IFNb), and
can activate both NF�B and IRF, inducing interferon
synthesis. The importance of IL1/TLR signalling in
atherosclerosis has been further highlighted by work

implicating IRAK4 kinase in modified LDL-medicated
experimental atherosclerosis [103].
The most characterised recognition system is the one

sensing LPS. Serum LPS-binding protein (LBP) transfers
LPS to CD14, which delivers it to the co-receptor MD2
[104,105]. The availability of all members of the com-
plex dictates the sensitivity of recognition of endotoxin
at extremely low concentrations. Cells that do not
express CD14, such as endothelial cells, are relatively
unresponsive compared to CD14+ monocytes [104,105].
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secretion of IL1 protein. Therefore, a connection between TLR and inflammasome pathways in the innate inflammatory process in atherosclerosis
is alluded to. ASC, apoptosis-associated speck-like protein containing a CARD; CARD, caspase recruitment domain; CD, cluster of differentiation;
ECM, extra-cellular matrix; I�B, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor; IL, interleukin; IRAK, interleukin 1
receptor-associated kinase; LPS, lipopolysaccharide; MAL, MyD88 adaptor-like; MyD88, myeloid differentiation primary response gene 88; NALP3,
nucleotide-binding oligomerization domain-like receptor P3; NF�B, nuclear factor kappa B; PAMPs, pathogen-associated molecular patterns; TLR,
toll-like receptor, TRAF, tumour necrosis factor receptor associated factor.

Shalhoub et al. Journal of Inflammation 2011, 8:9
http://www.journal-inflammation.com/content/8/1/9

Page 7 of 17



CD14 acts as a co-receptor (along with TLR4 and MD2)
for the detection of bacterial LPS. CD14, however, can
only bind LPS in the presence of LBP. TLR2 may also
be activated via scavenger co-receptors, including CD36
[106].
Toll-like receptor agonists
Initially, ligands binding to PRRs such as TLRs on/in
innate immune cells were believed to be of a pathogenic
aetiology; molecules or small molecular motifs derived
from, conserved within or associated with groups of
microorganisms (such as bacterial LPS). These have
been nominated pathogen associated molecular patterns
(PAMPs). More recently, such ligands have been classi-
fied as danger associated molecular patterns (DAMPs)
encompassing a wider definition which embodies the
existence of endogenous danger signals. The concept
that oxidation reactions involving lipids, proteins and
DNA produce non-microbial ‘oxidation-specific epi-
topes’ has emerged [107]. Of particular interest is that
host-derived oxidation-specific epitopes represent endo-
genous DAMPs, are recognised by PRRs and are capable
of driving the inflammation seen in atherosclerosis
[107].
DAMPs that may bind TLRs are numerous, some of

which have been proposed as endogenous culprits in
atherosclerosis. Examples of endogenous ligands to
TLR2 include necrotic cell products [108], apolipopro-
tein CIII [109], serum amyloid A [110], versican [111].
Furthermore, oxidised phospholipids, saturated fatty
acids, and lipoprotein A have been shown to trigger
macrophage apoptosis, under conditions of thapsigargin-
induced endoplasmic reticulum stress, via a mechanism
requiring both CD36 and TLR2 [112].
Hyaluronan fragment [113], biglycan [114], oxLDL

[115,116] and heat shock proteins [117] have been
shown to act through both TLR2 and TLR4. Long sur-
factant protein A [118], tenascin C [119], fibrinogen
[120], fibronectin EDA [121], heparan sulphate [122], b-
defensin 2 [123], amyloid b peptide [24] and minimally
modified LDL (mmLDL) [23] act via TLR4 alone. TLR3
detects mRNA [124,125], whilst TLR7 and TLR9 detect
nucleic acid-containing immune complexes [126,127].
TLRs 5, 6 and 8 are yet to have endogenous ligands
allocated to them [25].
Although both mmLDL and oxLDL are seen as

ligands to TLR4, the pathways by which recognition
occurs differ. The recognition of mmLDL is similar to
that of LPS and involves CD14 and MD2 [22], whilst
oxLDL initiates inflammatory responses through a
TLR4/TLR6 heterodimer in association with CD36 but
independently of CD14 [128]. A lipidic component of
LDL, namely oxPAPC, has been shown as capable of
inducing IL8 transcription via TLR4 in a manner which
is independent of both CD14 and CD36 [129]. Further

work, however, has seen oxPAPC inhibiting TLR4-
dependent IL8 induction, along with inhibition of E-
selectin and CCL2, whilst IL1b and TNFa signalling
remained unhindered [130]. Downstream of TLR4/
MD2/CD14, intracellular signalling in response to
mmLDL stimulation has been investigated and, in addi-
tion to the canonical MyD88 pathway, an alternative
pathway via sequential activation of spleen tyrosine
kinase (Syk), phospholipase Cg1, protein kinase C, and
NADPH oxidase 2 (gp91phox/Nox2) has been proposed
in the stimulation of pro-inflammatory cytokine produc-
tion and the effects thereof [131].
Toll-like receptor expression in atherosclerosis
TLRs are differentially expressed by the various cell
types in atherosclerosis, with TLR2 and TLR4 found on
monocytes, macrophages, foam cells and myeloid DCs,
as well as smooth muscle cells and B lymphocytes
(reviewed by [25]). Human and mouse atherosclerosis is
characterised by an increased expression of TLR1, TLR2
and TLR4 (and to some extent TLR5), mainly by macro-
phages and endothelial cells [116,132]. In mouse athero-
sclerosis, TLR4 expression is exclusively by macrophages
[116]. There has been shown to be co-localisation of
p65 (an NF�B family member) with both TLR2 and
TLR4 in macrophages in atherosclerosis [132].
The differential expression of the various TLRs by

monocyte subsets and macrophage subtypes remains
largely unknown at present, however there is some data
to support the relative transcription of TLR5 being
higher in M2 polarised human macrophages as com-
pared with M1 [28]. The circulating monocytes of
ApoE-/- mice with advanced atherosclerosis have
increased TLR2 and TLR4 expression [133]. This is also
the case for monocytes from patients with arterial dis-
ease when comparison is made with controls subjects
[134-137]. Interestingly, enhanced TLR signalling is
restricted to patients with acute coronary syndromes
[138-140].
Role of Toll-like receptors in atherosclerosis
When recognising ligands, the majority of TLRs associ-
ate the signalling adaptor MyD88 to initiate an intracel-
lular signalling cascade. More specifically, removing the
MyD88 pathway led to a reduction in aortic athero-
sclerosis (by approximately 60%) and a decrease in
macrophage recruitment to the artery wall (by approxi-
mately 75%), associated with reduced chemokine levels
[141,142]. In a functional human atherosclerosis study, a
significant reduction of pro-inflammatory cytokines and
MMPs was found after MyD88 inhibition [143].
The role of TLR2 and TLR4 has been extensively stu-

died in models of atherosclerosis. The first indication of
a role for TLR4 in atherosclerosis came from the finding
that C3H/HeJ mice - that hold a missense mutation of
TLR4’s cytoplasmic component - are resistant to
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atherosclerosis [144,145]. In accordance, specific dele-
tion of TLR4 in ApoE-/- mice resulted in a 24% reduc-
tion in whole aortic atherosclerotic lesion area and
significantly attenuated macrophage infiltration within
these lesions [141]. TLR2 deletion in LDLR-/- mice lim-
its lesion area by between a third and two-thirds
[141,146-148], reducing intra-lesion inflammation as evi-
denced by a reduction in total infiltrating macrophage
numbers [147,148], and attenuates macrophage to
smooth muscle cell ratio and extent of apoptosis [147].
Both TLR2 and TLR4 are known to be important in

post-vascular injury neo-intimal lesion formation
[149,150]. In a hypercholesterolaemic rabbit model of
atherosclerosis, carotid artery liposomal transfection of
TLR2 and TLR4 cDNA revealed that upregulation of
either TLR alone did not significantly affect carotid
atherosclerosis. Interestingly, transfection of both TLR2
and TLR4 together resulted in a synergistic acceleration
of atherosclerosis [151]. Recently, LDLR-/- mice trans-
planted with TLR2-/- TLR4-/- bone marrow displayed a
reduction in both macrophage apoptosis and athero-
sclerotic plaque necrosis as compared with LDLR-/-

mice transplanted with wild-type bone marrow, support-
ing an additive effect of TLR2 and TLR4 in murine
atherosclerosis [112].
A different picture came from bone marrow chimera

studies. Bone marrow transplantation from TLR2-/- to
LDLR-/- mice was unable to prevent diet-induced ather-
osclerotic lesions [146]. Bone marrow transfer from
C3H/HeJ to ApoE knockouts did not alter atherosclero-
sis susceptibility [152]. Synthetic TLR2 ligand adminis-
tered dramatically increases atherosclerosis in LDLR-/-

mice, with TLR2 deficient bone marrow transfer into
this model preventing TLR2 ligand-induced atheroma
[146]. Such studies raise the question of whether TLR2
signalling in myeloid cells is relevant in atherosclerosis,
as compared with TLR2 expression by cells resident in
the arterial wall. Importantly, it supports the role of
endogenous TLR2 ligand action on myeloid cells in
atherosclerosis, with exogenous agonists activating TLR2
on cells of a non-myeloid lineage.
What are the mechanisms through which TLR exert

proatherogenic actions? Importantly, TLR2, TLR4 and
TLR9 ligands promote lipid uptake by macrophages
and, hence, foam cell formation [111,153-155]. Differen-
tiated macrophages exhibit macropinocytosis (fluid
phase uptake of lipids) which is dependent upon TLR4
[156]. However, the effect of TLR signalling are not lim-
ited to foam cell formation but have a direct effect on
inflammation and matrix degradation.
Functional studies on human carotid endarterectomy

specimens have shown sustained TLR2 activation in
cells isolated from human atheromata [143]. TLR2 and
MyD88 play a key role in NF�B activation, and in the

production of inflammatory mediators CCL2, IL6, IL8,
MMPs 1, 2, 3 and 9 [143]. Conversely TLR4, and its
downstream signalling adaptor TRAM, were shown not
to be rate-limiting for cytokine production in this con-
text. This adds weight to the role of some (but not all)
TLRs in plaque vulnerability.
Furthermore, and as alluded to above, TLR ligation

may influence atherosclerosis through alterations in
MMP and TIMP expression. The effect of LPS on
human blood monocytes has been investigated and
MMP3 is upregulated [157], whilst MMPs 1, 2, 7, 10
and 14 and TIMPs 1, 2 and 3 are not upregulated by
LPS [157,158]. Controversially, two separate studies
have found upregulation [159] and no upregulation
[157] of MMP9 in human blood monocytes stimulated
with LPS. In human macrophages (from various sites)
meanwhile, MMPs 2, 3, 8, 9 and 14, and TIMP1 have
all been upregulated by LPS [158,160-163].
Using both human and murine models of athero-

sclerosis, we have investigated the consequence of endo-
somal TLRs in atherosclerosis and arterial injury.
Deficiency of TLR3 accelerates the onset of athero-
sclerosis in ApoE-/- mice. Moreover, genetic deletion of
TLR3 dramatically enhanced the development of elastic
lamina breakages after collar-induced injury. The sys-
temic (intraperitoneal) administration of double-
stranded RNA (dsRNA) - a TLR3 agonist - decreased
neointima formation upon arterial injury. Genetic dele-
tion of TLR3 was associated with the presence of large
interruptions of the elastic lamina after the placement of
a perivascular collar for arterial injury development.
Finally, lesion development in both human and mice
was associated in an increase of expression of TLR3 and
TLR3-associated responses, in particular in smooth
muscle cells pointing to this cell type as the carrier of
the protective effect. This data shows for the first time
that while extracellular TLRs may be detrimental to
atherosclerosis, intracellular TLRs may offer protection
against hypercholesterolemia and injury-induced lesions.
The mechanism of TLR3-induced protection is currently
unknown. IFNb production - that is a consequence of
TLR3 dependent signalling - has been associated with a
reduction in inflammasome activation and IL1 signal-
ling, as well as with induction of IL10 [164]. However, it
is uncertain whether the vasculoprotective effect of
TLR3 may be mediated via IFNb. Although IFNb has
been shown to be effective in an arterial injury model
[165], a more recent report showed a potential deleter-
ious role in atherosclerosis induced by hyperlipidemia
[166]. It is also uncertain whether synthetic dsRNA is
safe as therapeutic tool, as its administration elicits both
pro-inflammatory and anti-inflammatory mediators
[124]. Moreover, a recent study showed that dsRNA
intravenous administration at high doses may lead to
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endothelial cell apoptosis and increased vascular lesion
formation [167]. Further studies are needed to elucidate
the mechanisms of vasculoprotection elicited by TLR3.
TLR3 activation has been shown to elicit the production
in the vasculature of IL10 [124] and of the B7 family
members programmed cell death ligands PDL1 and
PDL2, which are known to contribute to vascular pro-
tection [168,169].
It is also unknown what endogenous agonists of TLR3

may be involved in protection, as the genetic removal of
TLR3 accelerates atherosclerosis and elastic lamina
damage. Interestingly, stathmin, a protein that partici-
pates in microtubule assembly and is upregulated in
brain injury, has been described as a candidate TLR3
agonist and has been linked to the induction of a neuro-
protective gene profile [170].
NOD-like receptors and inflammasomes and atherogenesis
NLRs are PRRs that sense intra-cellular microbial and
non-microbial signals, in a similar fashion to the extra-
cellular detection of these entities by most TLRs. NLRs
have the capacity to form large cytoplasmic complexes
known as “inflammasomes” (reviewed in [171]) through
the assembly of NLRs, caspase and apoptosis-associated
speck-like protein containing a caspase recruitment
domain (ASC). ASC acts to link the NLR and caspase,
the latter of which are usually caspase 1 and 11 [172].
The inflammasome acts as a scaffold for the activation
of caspase 1 as its central effector molecule [173]. Upon
activation, inflammasome caspase 1 proteolytically acti-
vates pro-inflammatory cytokines, notably the conver-
sion of pro-IL1b and pro-IL18 to IL1b and IL18,
respectively.
It is largely agreed that inflammasome activation

resulting in active IL1b release requires two separate
signals [174]. A priming signal may be triggered by TLR
activation, with resultant NF�B production leading to
pro-IL1b synthesis, as well as inflammasome compo-
nents such as caspase 11 [173]. Recognition of peptido-
glycan by NOD1 and NOD2 can also trigger activation
of NF�B signal transduction through Rip2 kinase [100].
The second signal, which activates the caspase 1 of a
complete inflammasome, allowing the conversion of
available pro-IL1b to IL1b includes activation by ATP of
the P2X7 purinergic receptor with potassium efflux. The
second signal may also be achieved by PAMPs such as
bacterial toxins and viral DNA, or other DAMPs includ-
ing oxidative stress, large particles and ultraviolet light
[171].
Inflammasomes have been described in a number of

inflammatory conditions [171] and evidence for their
role in atherosclerosis is emerging. The NLRP3 inflam-
masome is currently the most characterised inflamma-
some (Figure 2). Recent work has shown that
cholesterol crystals activate the NLRP3 inflammasome,

which in turn results in cleavage and secretion of IL1
family cytokines [21]. Furthermore, LDLR-deficient mice
transplanted with NLRP3-deficient bone marrow and
fed a high-cholesterol diet had markedly decreased early
atherosclerosis and inflammasome-dependent IL18 levels
[21]. LDLR-/- mice bone-marrow transplanted with
ASC-deficient or IL-1a/b-deficient bone marrow and
fed on a high-cholesterol diet had consistent and
marked reductions in both atherosclerosis and IL18 pro-
duction [21]. Furthermore, ASC deficiency also attenu-
ates neointimal formation after vascular injury via
reduced expression of IL1b and IL18, with ASC-/- bone
marrow chimeras also exhibiting significantly reduced
neointimal formation [175]. These findings taken
together suggest that crystalline cholesterol acts as an
endogenous danger signal, its deposition in arteries
being an early cause rather than a late consequence of
inflammation.
Both IL1 and IL18 signal through MyD88, and their

absence in experimental mouse atherosclerosis also has
the effect of limiting atherosclerosis development
[176,177]. Devlin et al showed that IL1ra knockout mice
on a cholesterol/chocolate diet, exhibited a 3-fold
decrease in non-high-density lipoprotein (HDL) choles-
terol and a trend toward increased foam cell lesion area
compared to controls [178]. Complementing this experi-
ment they showed, conversely, that increased IL1ra
expression (using an IL1ra transgenic/LDLR-/- mouse on
a cholesterol-saturated fat diet) resulted in a 40%
increase in non-HDL cholesterol levels. Thus concluding
that under certain conditions, chronic IL1ra depletion or
over-expression could have an important effect on lipid
metabolism.
This was also verified in human atherosclerotic

arteries [179], although more recently, IL1ra administra-
tion has been shown to have lesser effect on inflamma-
tory molecule production when compared to TLR
inhibition in the context of human atherosclerosis [143].

Macrophage deactivation pathways in atherosclerosis
PPARg has recently been highlighted as an important
determinant of macrophage phenotype and function
(Figure 3), which may explain the favourable effect of
PPARg modulation in experimental atherosclerosis
[180,181]. PPARg is a ligand-activated nuclear receptor
involved in reverse cholesterol transport and other
metabolic cellular activities [46]. Its anti-inflammatory
properties occur through negative interference with
nuclear factor �B (NF�B), signal transducer and activa-
tor of transcription (STAT), and activating protein 1
(AP1) pathways [182]. PPARg is strongly induced by IL4
[40,183]. PPARg upregulation may also be stimulated by
oxidised LDL, with PPARg being highly expressed in the
foam cells of atherosclerotic lesions, and ligand
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activation of PPARg promoting oxidised LDL uptake
and foam cell formation [184].
The functional relationship between PPARg and the

wound healing M2-type macrophage phenotype
[185,186] has been proposed through the positive corre-
lation between PPARg expression levels and the M2
markers CD206 [187], CD36 scavenger receptor [184],
IL10 [188] and alternative activated macrophage asso-
ciated CC-chemokine 1 (AMAC1; CCL18) [40]. Primary
human monocytes differentiated in vitro with IL4 in the
presence of PPARg agonist (termed M2g macrophages)
resulted in increased CD206 and reduced CD163

expression, above and beyond that which was seen with
IL4 alone [40] (Figure 3). M2g culture supernatant
exerted a greater anti-inflammatory effect on M1 macro-
phages as compared with M2 culture supernatant [40].
Subsequent work has shown that M2g macrophages
have down-regulation of the nuclear liver × receptor a
with resultant enhanced phagocytosis but reduced cho-
lesterol handling [41]. PPARg also limits MMP9 through
inhibition of NF�B activation [189].
However, in the clinical arena, PPARg agnonists have

been shown to have complex and opposing effects on
circulating levels of pro- and anti-inflammatory

Figure 3 Peroxisome proliferator-activated receptor g (PPARg) is a ligand-activated nuclear receptor with potent anti-inflammatory
properties that modulates the immune inflammatory response. It has been observed in human atherosclerotic lesions and is involved in
macrophage cholesterol homeostasis, cellular differentiation, lipid storage, insulin modulation, macrophage lipid homeostasis and anti-
inflammatory activities. Molecules such as oxidised low density lipoprotein (oxLDL) or fatty acids may stimulate inflammatory mediators such as
9- and 13- hydroxyoctadecadienoic acid (HODE) generated via the 12,15 lipoxygenase pathway. These are ligands for PPARg. IL4 is a cytokine
that can stimulate PPARg. PPARg activation is also associated with the expression of M2 macrophage markers such as the mannose receptor (MR)
also known as CD206 [40]. AMAC1, alternative activated macrophage associated CC-chemokine 1; AP1, activator protein 1; CD, cluster of
differentiation; IL, interleukin; NF�B, nuclear factor kappa B; SR, scavenger receptor; STAT, signal transducer and activator of transcription.
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molecules [190-193]. Furthermore, macrophages have
been observed adhering to areas of intimal thickening in
PPARg-dependent manner [194].

Conclusions
Macrophages have been shown to exert a number of
diverse functions in atherosclerosis, including inflamma-
tion, lipid metabolism and matrix degradation Recent
studies have highlighted significant heterogeneity in
macrophage behaviour and activation within athero-
sclerotic plaque. This heterogeneity is derived both
from the heterogeneity of originating monocytes, and
the inflammatory and lipidic stimuli available in the pla-
que. It is known that signalling pathways related to
innate immunity are strong determinants for macro-
phage activation and there is growing evidence that
they have a significant effect in plaque development and
the complications thereof. Innate immune pathways
may be activated by both infectious pathogens and
endogenous danger signals. An example of the latter is
the recognition by innate immune receptors of a grow-
ing number of lipoprotein components that are vital to
the development of atherosclerosis. Oxidised LDL is
seen to signal through TLR [22-24], cholesterol crystals
signalling through NLR [21], and oxPAPC signalling via
NRF2 [36]. The convergence of these pathways gives
rise to the activation of resident monocyte-macrophages
leading to cytokine and chemokine production. More-
over, TLR activation might have a role in biasing
macrophage polarisation towards an M1 phenotype,
together with Th1 lymphocytes present in the plaque.
These exciting new findings highlight a wealth of novel
potential therapeutic and diagnostic targets that may be
exploited in the future treatment of cardiovascular
disease.
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