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Abstract

Background: The natural function of the C-C chemokine receptor type 5 (CCR5) is poorly understood. A 32 base
pair deletion in the CCR5 gene (CCR5-delta32) located on chromosome 3 results in a non-functional protein. It is
supposed that this deletion causes an alteration in T-cell response to inflammation. For example, the presence of
the CCR5-delta32 allele in recipients of allografts constitutes as an independent and protective factor associated
with a decreased risk of graft-versus-host disease (GVHD) and graft rejection. However, the mechanism of this
beneficial effect of the deletion regarding GVHD is unknown. In this survey we searched for a CCR5-delta32
associated regulation of critical genes involved in the immune response and the development of GVHD.

Methods: We examined CD34+ hematopoietic progenitor cells derived from bone marrow samples from 19
healthy volunteers for the CCR5-delta32 deletion with a genomic PCR using primers flanking the site of the
deletion.

Results: 12 individuals were found to be homozygous for CCR5 WT and 7 carried the CCR5-delta32 deletion
heterozygously. Global gene expression analysis led to the identification of 11 differentially regulated genes. Six of
them are connected with mechanisms of immune response and control: LRG1, CXCR2, CCRL2, CD6, CD7, WD
repeat domain, and CD30L.

Conclusions: Our data indicate that the CCR5-delta32 mutation may be associated with differential gene
expression. Some of these genes are critical for immune response, in the case of CD30L probably protective in
terms of GVHD.
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Background
The C-C chemokine receptor type 5 (CCR5) belongs to
the super family of the seven-transmembrane G-protein
coupled receptors (GPCRs) [1]. It interacts with chemo-
kines that mediate the trafficking and function of mem-
ory/effector T-lymphocytes, macrophages, and immature
dendritic cells towards sites of inflammation [2]. When
bound by their chemokine ligands, these receptors can be
internalized, impairing the subsequent ability to bind their
ligands. Once internalized, these receptors tend to recycle

to the cell surface in time. Most chemokines activate more
than one receptor subtype and like other chemokine
receptors, CCR5 can bind several chemokines [3]. After
activation with small ligands, GPCRs are rapidly phos-
phorylated at serine and threonine residues within the
C-tail and the third intracellular loop [4].
CCR5 has gained prominence as a cofactor for HIV-1

entry. Hence, 74 mutations have been described in this
gene up to date including the intensively studied 32 base
pair deletion (CCR5-delta32) that introduces a premature
stop-codon into the CCR5 locus [5-7]. Epidemiologic stu-
dies have shown that the mutation occurs most fre-
quently in the Caucasian population with up to 10-20%
heterozygous and 1% homozygous carriers, while it can
not be found in the Asian, Middle East, African, and the
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American Indian population [8]. It is hypothesized that
the imbalanced distribution of this allele was caused by
environmental selective pressure, resulting in positive
selection for the delta32 deletion [9]. Individuals lacking
CCR5 display no remarkable illness and, no increased
susceptibility towards infectious diseases could be
observed until Lim et al. figured out a possible role for
CCR5 during infection with the West Nile virus (WNV)
[10].
Over the last decade, a large number of reports focus-

ing on the role of chemokines in the context of allograft
rejection have been made [11]. Furthermore, the first
CCR5 inhibitors have been tested concerning their thera-
peutic significance in terms of transplantation immunol-
ogy [12,13]. First clinical data will probably be available
soon from a trial introducing the CCR5 inhibitor Mara-
viroc® into allogeneic hematpoietic stem cell transplanta-
tion (HSCT) from the Abramson Cancer Center of the
University of Pennsylvania (NIH clinical trial number:
NCT00948753).
The CCR5 gene is mapped to the short arm of chromo-

some 3 amongst a group of genes that encode multiple
chemokine receptors [14]. CCR5 up-regulation has been
proposed by NF-�B, but recently it was suggested that
gene regulation is modified by the cAMP/CREP pathway
[15,16]. The effect of the CCR5-delta32 deletion on the
expression on other genes has been intensively investi-
gated for CXCR4 [17]. The aberrant gene product from
CCR5-delta32 builds an intracellular complex with the
CXCR4 receptor preventing the expression on the cell
surface. Although the mechanism is well described there
is a controversy on the question whether this complex is
sufficient to suppress CXCR4. Furthermore, it is
unknown whether the deletion influences the expression
of other genes or forms complexes with a second or third
protein.
Apart from the role in HIV infection, the CCR5-delta32

mutation seems to be a modulator regarding immune
responses and transplantation immunology. There has
also been proposed an association of the mutation with
the occurrence of allograft rejection and protection
against graft-versus-host disease (GVHD) [18,19].
For HSCT, testing for at least five HLA genes is required

before declaring that donor and recipient are HLA-con-
cordant. However, GVHD can occur even though donor
and recipient are HLA-concordant as the immune system
is still able to recognize other differences in antigenicity
and recipients need intensive immunosuppressive medica-
tion to prevent the development of GVHD [20,21].
Although there are advances in the treatment of GVHD,
this inflammatory immunoreaction is still responsible for
15% of treatment related mortality [22]. Therefore, under-
standing and manipulating the mechanisms of GVHD is
of important scientific and clinical impact.

Chemokines play a crucial role in the pathogenesis of
GVHD after allogeneic HSCT. In experimental models,
due to the redundancy of receptor ligand interaction, the
deficiency or blockage of a single chemokine does not pro-
tect the allograft from acute rejection [18]. However,
recent studies have demonstrated that the blockade or
absence of a single chemokine receptor does prolong allo-
graft survival in a fully HLA mismatched model [23].
However, the molecular basis of the protective effect of

CCR5-delta32 is poorly understood. It is still unclear,
whether the CCR5-delta32 deletion may have an effect on
the expression of genes, which communicate immunologi-
cal responses or whether the protective effect of the
CCR5-delta32 deletion is solely caused by the lack of func-
tional CCR5. One of the most elaborately investigated but
also controversially discussed association of the CCR5-
delta32 deletion is the putative suppression of the chemo-
kine receptor CXCR4 [17]. With concern to this, there is
only data available from an animal model, in which CCR5
has been blocked by specific inhibitors [24,25].
To investigate the molecular basis of the CCR5-delta32

deletion in terms of the biology of immune responses, we
performed an array based global analysis of gene expres-
sion in CD34+ hematopoietic progenitors from healthy
individuals either wild type for CCR5 or heterozygous
carriers of the CCR5-delta32 deletion.
Some functional or evolutionary related genes are clo-

sely localized in gene clusters. There is a rising count of
deletions in other genes described where not only the
deletion but also deletion associated down-stream altera-
tions of clustered genes are affected [26,27]. Chemokine
and chemokine receptor genes are also known to be clus-
tered in the human genome. Most CC-chemokine recep-
tor genes like CCR5 have been shown to map within
3p21.3, while CXC-chemokine receptor genes were
mapped with few exceptions to 2q35 [28]. The clustering
of chemokine and chemokine receptor genes suggests a
relatively recent and rapid evolution of both gene families
by genomic duplications [29]. To detect a potential effect
of the deletion on co-regulated or clustered genes, only
genes meeting one of two criteria: 1. role in immune
response or GVHD or 2. located on chromosome 3, have
been selected for further statistical analysis.

Materials and methods
Material
Input material for this analysis were immunomagneti-
cally purified CD34+ cells from bone marrow aspiration
of 19 healthy volunteers, 9 male 10 female, aged 19-85
(median 25) years. All donors gave written informed
consent before investigation. Prior to CD34+ selection,
mononuclear cells were isolated by density gradient cen-
trifugation through Ficoll-Hypaque (Biochrom, Berlin,
Germany).
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CCR5 genotyping analysis
Genomic DNA was extracted from heparinised peripheral
blood monocytes (PBMC) of the donors with the QIA-
GEN-Blood-Midi-Kit (Qiagen, Germany). Screening of the
donors for the CCR5-delta32-allele was performed with a
genomic PCR using primers flanking the site of the dele-
tion (forward: 5’-CTCCCAGGAATCATCTTTACC-3’,
reverse: 5’-TCATTTCGACACCGAAGCAG-3’) leading to
a PCR fragment of 200 base pairs (bp) for the CCR5-allele
and of 168 bp in case of a delta32 deletion. Results were
confirmed by allele specific PCR and by direct sequencing
using the BigDye®-Terminator-1.1.-Cycle-Sequencing-Kit
(Applied Biosystems, Germany). Sequences were analyzed
using the Vector-NTI-Contig-Express-software (Invitro-
gen, Germany).

RNA preparation and array based gene expression
analysis
Total RNA was extracted from purified CD34+ haemato-
poietic progenitor cells using TRIzol (Invitrogen, Karls-
ruhe, Germany) according to the manufacturer’s
protocol. The quality of RNA was determined by the
2100 Bioanalyzer system (Agilent Technologies, Wald-
bronn, Germany) and only samples showing no RNA-
degradation were included into the analysis. Oligonucleo-
tide microarrays (HG-U133plus 2.0, Affymetrix Inc.,
Santa Clara, CA) were hybridized as described previously
[30]. Data analysis was performed by the Microarray
Suite 5.0 (Affymetrix), and the Genespring software 4.2
(Silicon Genetics, Redwood City, CA). The quality con-
trol parameters were in accordance to the MIAME con-
sensus criteria for micro array data with a present call
rate of at least 25% [31,32].

Statistics
All samples were normalized with expression values raised
to an arbitrary value of 1. Only expression values which
reach a present call rate of 75% have been used. Only
genes with a significant (p < 0.05) difference of expression
between the CCR5 wild type and the CCR5-delta32 group
were eligible for further statistical analysis. Expression ana-
lysis of the different groups was performed by using the
Mann Whitney test.

Results
CCR5 genotyping
From 19 healthy donors, 12 individuals were found to
be homozygous for CCR5 WT whereas 7 carried the
CCR5-delta32 deletion allele.

Micro-array analysis
A total of 110 genes were found to be differentially
expressed comparing WT and heterozygous carriers of
CCR5-delta32. Eleven genes showed a significant higher
expression in the wild type group and 99 genes were
detected with a higher expression in the CCR5-delta32
group [data not shown]. Further review of gene databases
concerning the known or proposed function of these
genes regarding immune system and GVHD or location
on chromosome 3 revealed 5 genes in the WT group and
6 genes in the CCR5-delta32 group with significantly dif-
ferent expression profiles (Table 1). Of these 11 genes, 5
were located on chromosome 3 and moreover two,
CCRL2 and WD repeat domain, in the 3p region closely
to the CCR5 gene (Figure 1).
The 5 genes with higher expression in the WT group

showed a particularly broad variation of expression

Table 1 Gene expression and gene function

Significant higher Expression in CCR5 wild type samples

Gene Location Function Ref.

1. LRG1 19p13.3 Protein-protein interaction, signal transduction, and cell adhesion and development. Expression during
granulocyte differentiation.

[35]

2. CXCR2 2q35 Receptor for interleukin 8 and chemokine ligand 1. Mediates neutrophil migration to sites of inflammation. [44]

3. HSP70-2 6p21.3 Located in the MHC complex class III region, in a cluster with two closely related genes which encode similar
proteins.

[45]

4. CCRL2 3p21 Encodes a chemokine receptor like protein, most closely related to CCR1. [46]

5. RSRC1 3q25.32 Spliceosome assembly and participate in multiple steps of mRNA splicing. [47]

Significant higher Expression in CCR5-delta32 samples

1. CD6 11q13 Involved in T-cell activation. [48]

2. CD7 17q25.2-
q25.3

Found on thymocytes and mature T cells. Mediates T-cell interactions and also in T-cell/B-cell interaction
during early lymphoid development.

[49]

3. CD30L 9q33 Early CD30 signalling is critical for Treg-mediated acute GVHD protection after major MHC-mismatch HSCT. [50]

4. SIAT1 3q27-q28 Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates. [51]

5. ATP6V1A 3q13.31 Necessary for protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton
gradient generation.

[52]

6. WD repeat
domain

3p21.31 Interacts with serine/threonine kinase 11, and is implicated in cell growth arrest. [53]
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values whereas in the corresponding group of CCR5-
delta32 samples, the variation coefficient was 50% com-
pared to 67% in the wild type group (Figure 2A). In the
other group of 6 genes, it was noticeable that only small
values of expression were detectable in the WT group
compared to those obtained from the CCR5-delta32 sam-
ples (Figure 2B)

Discussion
The protective effect of alteration of CCR5 expression in
patients after allogeneic HSCT and recipients of allografts
has been proposed in several circumstances (Table 2).
There, acute and chronic graft failure in recipients of allo-
geneic organs was significant reduced in the group of
CCR5-delta32 patients. Furthermore, a significant

Figure 1 Mapping the chemokine cluster on chromosome 3. The differentially expressed genes CCRL2 and WD repeat domain 6 are closely
related to the CCR5 gene.
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association of the common CCR5 haplotype (H1/H1) and
advantage of disease free survival and overall survival in
recipients of allogeneic HSCT could have been found. The
authors suggested CCR5 genotyping as a new diagnostic
and prognostic strategy for therapy optimization [33].
The search for host factors and their genetic contribu-

tion to immune responses presumes fundamental under-
standing of pathogenesis. The association of candidate
gene polymorphisms in several circumstances has pro-
vided new strategies of intervention. In the future, geno-
mic tests will allow performing both, prognostic and
predictive sub-typing of patient populations and of HSCT
donors, respectively. Patients may benefit from especially
selected donors targeted to their specific disease processes
and will (probably) therefore have a reduced risk regarding
development of life-threatening adverse events like
GVHD.

In terms of immune activation, we found two genes
(LRG1 and CXCR2) with significant higher expression in
the wild type group, which are related to leukocyte differ-
entiation and trafficking. LRG1 works as a secretory type
1 acute-phase protein whose expression is up-regulated
by the mediator of acute-phase response [34]. However,
its role in the context of GVHD is still to be determined.
The LRG1 gene is localized to chromosome 19p13.3, a
region to which the genes for several neutrophil granule
enzymes also map and that has a proposed role in early
neutrophilic granulocyte differentiation [35]. For CXCR2
there are data available on the effect of CXCR2 poly-
morphism in the context of GVHD. The transcriptional
activity of the CXCR2 variant promoter was 2.6-fold
higher than that of the wild-type promoter. However, no
significant association was observed between CXCR2
polymorphisms and allograft outcomes [36].

Figure 2 CCR5 gene array expression analysis. A. Genes with higher expression in the wild type (WT) group compared to the CCR5-delta32
heterozygous group. B. Genes with higher expression in the CCR5-delta32 heterozygous group compared to the WT group.
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Interestingly, three of the six genes overexpressed in
the CCR5-delta32 group are important in T-cell (CD6
and CD7) or both T- and B-cell function (CD30L). For
example, CD30 and its ligand CD30L may be an impor-
tant co-stimulatory molecule and marker for the physio-
logical balance between TH1/TH2 immune response
associated with allograft rejection [37]. The CD30/
CD30L pathway is a potent regulator of CD4+, but not
CD8+, T cell-mediated GVHD. Although blocking
CD30/CD30L interaction in vivo did not affect alloreac-
tive CD4+ T cell proliferation or apoptosis, a substantial
reduction in donor CD4+ T cell migration into the gas-
trointestinal tract was readily observed with minor
effects in other GVHD target organs [38]. However, the
role of CD30L and the CD30/CD30L interaction in
immune response has still to be determined and recent
studies in an CD30-/- animal model or pharmacological
blockade of CD30/CD30L interaction are somehow con-
tradicting [39]. Nevertheless, the CD30/CD30L interac-
tion has been found to be critical for the suppressive
effect on GVHD of CD4+CD25+ Treg (T regulatory)
cells [40]. It has been assumed that Treg cells are one of
the key players in reducing GVHD while preserving
antitumor activity of memory CD8+ cells after allo-
geneic HSCT [41].
Here, we could describe two genes, CCRL2 and WD

repeat domain 6, flanking the CCR5 gene on chromosome
3, which showed an altered expression profile comparing

wild type and CCR5-delta32 heterozygous group. This
could be evidence for a cluster co-regulation of these gene
caused by the 32 base pair deletion in the CCR5 gene.
The other four altered genes HSP70-2, RSC1, SIAT1,

ATP6V1A have no described association with immune
responses or GVHD so far. HSP70-2 which is located in
the HLA class III complex deciphers a putative role in
autoimmune diseases [42,43].

Conclusions
CCR5-delta32 deletion in hematopoietic stem cells
might be associated with differential expression and
some of these genes, such as CD30L, may have addi-
tional effects in the development of allogeneic immune
responses. In terms of a personalized medicine, the
long-term objective will probably be to perform addi-
tional screening for less favourable or beneficial genetic
polymorphism with regard to an optimized donor selec-
tion for recipients of an allogeneic HSCT to prevent
treatment related complications like GVHD.

Acknowledgements
This work was supported by a grant from the Deutsche José Carreras
Leukämie Stiftung, Munich, Germany. We thank Susanne Ganepola for
reading the manuscript.

Author details
1Institute of Transfusion Medicine and Immunology, Medical Faculty
Mannheim, Heidelberg University; German Red Cross Blood Service Baden-

Table 2 Transplantation and CCR5 polymorphism

No. of patients Setting of transplantation Genotyping
Recipients (R)/Donor (D)

Outcome Ref.

Hematopoietic stem cell transplantation

1370 HSCT (MURD) (R): CCR5(H1/H1) DFS ↑, OS ↑ [33]

(D): CCR5(H1/H1) DFS ↓

349 HSCT
(MURD & MRD)

(R): CCR5-delta32 GvHD ↓ [19]

(D): CCR5-delta32 No acute GvHD*

1273 HSCT
(MURD)

(R): nd [54]

(D): CCR5-delta32 GvHD ↓**

Solid organ transplantation

158 Liver (R): CCR5-delta32 AR ↓ [55]

(D): nd

1227 Kidney (R): CCR5-delta32 Allograft Survival ↑ [18]

(D): nd

163 Kidney (R): CCR5-59029-A/G AR ↓ [56]

(D): nd

158 Heart (R): CCR5 No-E EAR ↓ [57]

(D): nd

Summary of clinical trials focusing on the outcome of allogeneic stem cell or tissue transplantation in regard to different CCR5 polymorphism. In most cases,
CCR5 genotyping was only performed in recipients. (HSCT = hematopoietic stem cell transplantation, MURD = matched unrelated donor, MRD = matched related
donor, nd = not done, DFS = disease free survival, OS = overall survival, GVHD = graft-versus-host disease, AR = acute rejection, EAR = early acute rejection)

* in the case of CCR5-delta32 for both donor and recipient, respectively.

** not significant
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