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Role of IL-33 in inflammation and disease

Ashley M Miller

Abstract

Interleukin (IL)-33 is a new member of the IL-1 superfamily of cytokines that is expressed by mainly stromal cells,
such as epithelial and endothelial cells, and its expression is upregulated following pro-inflammatory stimulation. IL-
33 can function both as a traditional cytokine and as a nuclear factor regulating gene transcription. It is thought to
function as an ‘alarmin’ released following cell necrosis to alerting the immune system to tissue damage or stress.
It mediates its biological effects via interaction with the receptors ST2 (IL-1RL1T) and IL-1 receptor accessory protein
(IL-TRACP), both of which are widely expressed, particularly by innate immune cells and T helper 2 (Th2) cells. 1L.-33
strongly induces Th2 cytokine production from these cells and can promote the pathogenesis of Th2-related
disease such as asthma, atopic dermatitis and anaphylaxis. However, IL-33 has shown various protective effects in
cardiovascular diseases such as atherosclerosis, obesity, type 2 diabetes and cardiac remodeling. Thus, the effects of
IL-33 are either pro- or anti-inflammatory depending on the disease and the model. In this review the role of IL-33
in the inflammation of several disease pathologies will be discussed, with particular emphasis on recent advances.

Review

Basic Biology of IL-33

Interleukin (IL)-33 (also known as IL-1F11) was origin-
ally identified as DVS27, a gene up-regulated in canine
cerebral vasospasm [1], and as “nuclear factor from high
endothelial venules” (NF-HEV) [2]. However, in 2005
analysis of computational structural databases revealed
that this protein had close amino acid homology to
IL-18, and a PB-sheet trefoil fold structure characteristic
of IL-1 family members [3]. IL-33 binds to a ST2L (also
known as T1, IL-1RL1, DER4), which is a member of
the Toll-like receptor (TLR)/IL1R superfamily. IL-33/
ST2L then forms a complex with the ubiquitously
expressed IL-1R accessory protein (IL-1RAcP) [4-6]. Sig-
naling is induced through the cytoplasmic Toll-interleu-
kin-1 receptor (TIR) domain of IL-1RAcP. This leads to
recruitment of the adaptor protein MyD88 and activa-
tion of transcription factors such as NF-xB via TRAF6,
IRAK-1/4 and MAP kinases and the production of
inflammatory mediators (Figure 1) [3]. The ST2 gene
can also encode at least 2 other isoforms in addition to
ST2L by alternative splicing, including a secreted soluble
ST2 (sST2) form which can serve as a decoy receptor
for IL-33 [7], and an ST2V variant form present mainly
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in the gut of humans [8]. Signaling through ST2L also
appears to be negatively regulated by the molecule
single Ig IL-1R-related molecule (SIGIRR) and IL-33
induced immune responses were enhanced in SIGIRR™"
mice [9].

IL-33 appears to be a cytokine with dual function, act-
ing both as a traditional cytokine through activation of
the ST2L receptor complex and as an intracellular
nuclear factor with transcriptional regulatory properties
[10]. The amino terminus of the IL-33 molecule con-
tains a nuclear localization signal and a homeodomain
(helix-turn-helix-like motif) that can bind to heterochro-
matin in the nucleus and has similar structure to the
Drosophila transcription factor engrailed [2,11]. In a
similar manner to which a motif found in Kaposi sar-
coma herpesvirus LANA (latency-associated nuclear
antigen) attaches its viral genomes to mitotic chromo-
somes, nuclear IL-33 is thought to be involved in tran-
scriptional repression by binding to the H2A-H2B acidic
pocket of nucleosomes and regulating chromatin com-
paction by promoting nucleosome-nucleosome interac-
tions [12]. However, the specific transcriptional targets
or the biological effects of nuclear IL-33 are unclear at
present.

Both IL-1B and IL-18 are synthesized as a biologically
inactive precursors and activated by caspase-1 cleavage
under pro-inflammatory conditions and it was initially
thought that IL-33 underwent similar processing by
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Figure 1 IL-33 release and signaling via ST2L. IL-33 is predominantly expressed by stromal cells such as epithelial and endothelial cells.
Damage to these cells can induce necrosis and release of full length IL-33 which can activate the heterodimeric ST2L/IL-1RACP receptor
complex on a variety of immune cells or be neutralized by binding to sST2. During apoptosis IL-33 is cleaved by caspases-3/7 leading to its
inactivation. Upon activation of ST2L MyD88 and IRAK-1/4 are recruited and this leads to activation of the transcription factor nuclear factor-«B
(NF-xB) and the mitogen-activated protein kinase (MAPK) pathway, which is mediated by the activation of the MAPKs extracellular signal-
regulated kinase (ERK), p38 and JUN N-terminal kinase (JNK) and ultimately to the production of Th2 cytokines and chemokines.
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caspase-1 [3]. However, recent studies suggest that pro-
teolytic processing is not required for IL-33 signaling via
ST2L [13]. Furthermore, it has been suggested that a
new splice variant of IL-33 exists, which lacks the puta-
tive caspase-1 cleavage site, and is biologically active
inducing signaling via ST2L [14]. In fact, cleavage of IL-
33 by caspases appears to mediate inactivation of IL-33
and its pro-inflammatory properties [13,15-17]. Cur-
rently, it is thought that full length biologically active
IL-33 may be released during necrosis as a endogenous
danger signal or ‘alarmin’, but during apoptosis IL-33 is

cleaved by caspases leading to inactivation of its
pro-inflammatory properties [18].

IL-33, an inducer of Th2 immune responses

Unlike the other IL-1 family members IL-33 primarily
induces T helper 2 (Th2) immune responses in a num-
ber of immune cell types (reviewed in detail in [19]).
ST2L was initially shown to be selectively expressed on
Th2, but not Thl [20,21] or regulatory (Treg) T cells
[22]. Subsequent studies have shown that IL-33 can acti-
vate murine dendritic cells directly driving polarization
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of naive T cells towards a Th2 phenotype [23], and it
can act directly on Th2 cells to increase secretion of
Th2 cytokines such as IL-5 and IL-13 [3,24]. Further-
more, IL-33 can also act as a chemo-attractant for Th2
cells [25]. IL-33 can activate B1 B cells in vivo, markedly
enhancing production of IgM antibodies and IL-5 and
IL-13 production from these cells [3,26,27].

IL-33 is also a potent activator of the innate immune
system. Schmitz and co-workers demonstrated that
injection of IL-33 into mice induces a profound eosino-
philia [3], and has potent effects on this cell type,
including induction of superoxide anion and IL-8 pro-
duction, degranulation and cell survival [28]. Subse-
quently, it has been shown that IL-33 is also a potent
activator of mast cells and basophils and can induce
degranulation, maturation, promote survival and the
production of several pro-inflammatory cytokines in
these cells [29-32]. In neutrophils, IL-33 prevents the
down-regulation of CXCR2 and inhibition of chemotaxis
induced by the activation of TLR4 [33]. Macrophages
constitutively express ST2L and IL-33 can amplify an
IL-13-driven polarization of macrophages towards an
alternatively activated or M2 phenotype, thus enhancing
Th2 immune responses [34]. IL-33 can also enhance
LPS-induced production of TNFa in these cells [35].

It is likely that the primary role of these IL-33 effects
on the immune system in evolutionary terms was in
host defense against pathogens. In fact, IL-33/ST2 have
been shown to be highly expressed and protective sev-
eral parasite infections in animal models in which Th2
cells are host protective, including Leishmania major
[36,37], Toxoplasma gondii [38], Trichuris muris [39],
and Nippostrongylus brasiliensis [40]. Furthermore, a
recent discovery has highlighted a new population of
cells named nuocytes which expand in response to IL-
33 and represent the predominant early source of IL-13
during helminth infection with Nippostrongylus brasi-
liensis [41]. However, it is clear that the potent activa-
tory effects of IL-33 on several immune cell types is
likely to impact on various inflammatory diseases.

Role of the IL-33/ST2 pathway in inflammatory diseases
Asthma

Asthma is a chronic inflammatory disease classically
characterized by airway hyper-responsiveness, allergic
inflammation, elevated serum IgE levels, and increased
Th2 cytokine production. Given that IL-33 is a strong
inducer of Th2 immune responses its role in asthma has
been extensively studied (reviewed in [42]). Initial gene
expression studies in a range of tissues using human and
mouse cDNA libraries revealed expression of IL-33 in
lung tissue, and high expression in bronchial smooth
muscle cells [3]. More recently, expression of IL-33 was
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found in higher levels in endobronchial biopsies from
human asthmatic subjects compared to controls. The
IL-33 expression was particularly evident in those with
severe asthma [43], and the expression was mainly
located in bronchial epithelial cells [44]. Studies to inves-
tigate which cells were the main IL-33 responsive cells in
lung demonstrated that both epithelial and endothelial
cells, but not smooth muscle cells or fibroblasts were
important [45]. Several animal model studies have high-
lighted a functionally important role for IL-33/ST2 in
asthma and allergic airways inflammation. In a murine
ovalbumin-induced airway inflammation model, intrana-
sal administration of IL-33 induces antigen-specific IL-5"
T cells and promotes allergic airway disease even in the
absence of IL-4 [24]. Furthermore, intranasal IL-33 also
promotes airways hyper-responsiveness, goblet cell
hyperplasia, eosinophilia, polarization of macrophages
towards an M2 phenotype, and accumulation of lung
IL-4, IL-5 and IL-13 [34,46,47]. More recently, an IL-33
transgenic mouse was generated in which IL-33 expres-
sion was controlled under a CMV promoter and released
as a cleaved 18 kDa protein in pulmonary tissue [48].
These mice developed massive airway inflammation with
infiltration of eosinophils, hyperplasia of goblet cells and
accumulation of pro-inflammatory cytokines in bronch-
oalveolar lavage fluid. In contrast, intraperitoneal anti-
IL-33 antibody treatment inhibited allergen-induced lung
eosinophilic inflammation and mucus hypersecretion in a
murine model [49]. Furthermore, administration of
blocking anti-ST2 antibodies or ST2-Ig fusion protein
inhibited Th2 cytokine production in vivo, eosinophilic
pulmonary inflammation and airways hyper-responsive-
ness [50]. At present, the role of IL-33/ST2 in studies
using ST2-deficient mice is unclear as these mice are not
protected in the ovalbumin-induced airway inflammation
model but have attenuated inflammation in a short-term
priming model of asthma. Furthermore, there is also an
exacerbation of disease in wild-type or Rag-1"" mice that
had undergone adoptive transfer of ST2”~ DO11.10 Th2
cells [24,51,52]. In order to clarify the role of IL-33/ST2
in lung inflammation, several groups have generated
mice deficient in IL-33. Oboki and co-workers demon-
strated that 2 sensitizations of IL-33”" mice with ovalbu-
min emulsified in alum showed attenuated eosinophil
and lymphocyte recruitment to the lung, airway hyper-
responsiveness and inflammation [19]. A similar study by
Louten and colleagues has also shown that endogenous
IL-33 contributes to airway inflammation and peripheral
antigen-specific responses in ovalbumin-induced acute
allergic lung inflammation using IL-33"" mice [53].
Collectively, the data suggest that IL-33 is involved in
lung inflammation and supports the concept of ST2 as a
therapeutic target in asthma.
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Rheumatological diseases

Recent evidence suggests a role for IL-33/ST2 in several
rheumatological diseases, including rheumatoid arthritis
(RA), osteoarthritis (OA), psoriatic arthritis (PsA) and
systemic lupus erythematosus (SLE). The first study to
link IL-33 expression with arthritis utilized in situ hybri-
dization to show that IL-33 mRNA expression in the
RA synovium is primarily in endothelial cells [11]. Sub-
sequently, IL-33 protein has been found in endothelial
cells of synovial tissue and in cells morphologically con-
sistent with synovial fibroblasts in a subset of RA, PsA
and OA patients [54]. IL-33 is also expressed in cultured
synovial fibroblasts from patients with RA and expres-
sion was markedly elevated in vitro by inflammatory
cytokines [55,56]. Circulating IL-33 protein has also
been detected in 94/223 RA patient serum samples by
ELISA, but was completely absent in healthy controls or
OA samples [57]. Furthermore, the level of serum IL-33
decreased after anti-TNF treatment and correlated with
production of IgM and RA-related autoantibodies
including Rheumatoid Factor and anti-citrullinated pro-
tein antibodies. Serum and synovial fluid levels of IL-33
have also been shown to decrease in patients who
respond to anti-TNF treatment, while they did not
change in non-responders [58]. Similarly, Talabot-Ayer
and co-workers show that serum and synovial fluid
IL-33 levels were higher in RA than in OA patients, and
undetectable in PsA serum and synovial fluid [54].
Another study has demonstrated that neutrophils from
patients with RA successfully treated with anti-TNF
treatment expressed significantly lower levels of ST2
than patients treated with methotrexate alone [59]. In
SLE, one study has shown serum IL-33 levels were
significantly increased, compared with healthy controls,
but to a lower extent than in patients with RA [60]. The
other study reported no change in serum IL-33 levels
between controls and SLE patients, but did report a
significant increase in sST2 that correlated with SLE
disease activity [61].

In murine models of RA, IL-33 mRNA has also been
detected in the joints of mice undergoing collagen-
induced arthritis (CIA) [56], and in mouse knee joints
injected with methylated bovine serum albumin [59].
Furthermore, ST2”" mice developed attenuated CIA and
reduced ex vivo collagen-specific induction of pro-
inflammatory cytokines (IL-17, TNFa, and IFNy), and
antibody production [55]. Conversely, treatment with
IL-33 exacerbated CIA and elevated production of both
pro-inflammatory cytokines and anti-collagen antibodies
through a mast cell-dependent pathway. Administration
of blocking anti-ST2 antibodies at the onset of CIA also
attenuated the severity of disease and reduced joint
destruction [56]. This was also associated with reduced
IFNy and IL-17 production. In a model of anti-glucose-
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6-phosphate isomerase autoantibody-induced arthritis,
IL-33 treatment exacerbated disease. Conversely, ST2”"
mice were protected against disease and had reduced
expression of articular pro-inflammatory cytokines [62].
The IL-33 effects in this model also appear to be mast
cell-dependent as IL-33 failed to increase the severity of
the disease in mast cell-deficient mice, and mast cells
from wild-type, but not ST2”" mice restored the ability
of ST27" recipients to respond. IL-33 has also been
shown to chemoattract neutrophils to a knee joint
injected with methylated bovine serum albumin [59].

Various rheumatological diseases can have effects on
bone including erosion (e.g. RA) and ossification and
the formation of new bone (e.g., ankylosing spondylitis
and OA). Recently, the role of IL-33 in bone metabolism
and remodeling has been studied with conflicting
results. Bone structure and metabolism are determined
by the formation and activity of osteoclasts and osteo-
blasts. Mun and co-workers showed that IL-33 can sti-
mulate the formation of multi-nuclear osteoclasts from
monocytes, and enhanced expression of osteoclast dif-
ferentiation factors including TRAF6, nuclear factor of
activated T cells cytoplasmic 1, c-Fos, c-Src, cathepsin
K, and calcitonin receptor [63]. However, in contrast
two other studies have shown that IL-33 completely
abolished the generation of multinucleated osteoclasts
[64] or had no direct effect [65,66].

IL-33 also appears to have direct effects on osteoblast
cells. IL-33 expression increases during osteoblast differ-
entiation, and that while ST2”" mice displayed normal
bone formation they had increased bone resorption,
thereby resulting in low trabecular bone mass [64].
Furthermore, IL-33 mRNA levels are increased in osteo-
blasts following treatment with the bone anabolic factors
parathyroid hormone or oncostatin M. In addition, IL-
33 treatment promoted matrix mineral deposition by
osteoblasts in vitro [65]. However, a recent study reports
conflicting data that while IL-33 mRNA is present in
human osteoblasts, ST2L is not constitutively expressed
and IL-33 treatment has no effect on these cells [66].
The reasons for these differences in the biology of IL-33
in osteoclasts and osteoblasts are unclear at present but
may reflect different cell culture conditions and differen-
tiation protocols used. In summary, IL-33 appears to
have pro-inflammatory effects in various rheumatologi-
cal diseases activating synovial fibroblasts and mast cells
within joints.

Inflammatory skin disorders

Skin and activated dermal fibroblasts contain a high
level of IL-33 mRNA expression compared to other tis-
sues and cell types [3]. IL-33 mRNA and protein is also
substantially higher in the skin lesions of patients with
atopic dermatitis compared with non-inflamed skin
samples [67], and in affected psoriatic skin compared to
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healthy skin [68,69]. Elevated serum IL-33 levels have
also been detected in patients with systemic sclerosis,
and levels correlated positively with the extent of skin
sclerosis [70]. Furthermore, subcutaneous administration
of IL-33 can induce IL-13-dependent fibrosis of skin in
murine models [71]. Recently, it was shown that ST27"
mice exhibited reduced cutaneous inflammatory
responses compared to WT mice in a phorbol ester-
induced model of skin inflammation [69]. Furthermore,
intradermal injections of IL-33 into the ears of mice
induced a psoriasis-like inflammatory lesion that was
partially dependent on mast cells.

In addition, IL-33 expression was induced in pericytes

in an experimental model of wound healing in rat skin
[72]. Surprisingly, IL-33 has also been shown to induce
cutaneous hypernociception in mice, a phenomenon tra-
ditionally associated with Thl responses [73]. Collec-
tively, these results demonstrate that IL-33 may play a
role in various inflammatory skin disorders (Figure 2).
Inflammatory bowel disease (IBD)
IBD is a group of chronic inflammatory conditions of the
colon and small intestine, including ulcerative colitis
(UC) and Crohn’s disease, resulting from dysregulated
immune responses. Several studies report an upregulation
of IL-33 mRNA in human biopsy specimens from
untreated or active UC patients compared to controls
[72,74-77]. The main sites of UC IL-33 expression were
myofibroblasts and epithelial cells. Similarly, ST2 tran-
scripts have been detected in mucosa samples from
patients with active UC [74,75]. However, although Car-
riere and co-workers demonstrated expression of IL-33 in
endothelial cells of Crohn’s disease intenstine [11], subse-
quent studies have failed to demonstrate a significant role
for IL-33 in Crohn’s disease [72,74,76]. Serum IL-33 and
sST2 levels were elevated in UC patients compared with
controls, while anti-TNF treatment decreased circulating
IL-33 and increased sST2, thus favorably altering the
ratio of the cytokine with its decoy receptor [74]. How-
ever, in other studies serum concentrations of IL-33 were
low or did not differ between UC patients and healthy
controls [75,78].

Several murine studies highlight a role for IL-33 in
innate-type immunity in the gut. Mice treated with IL-
33 displayed epithelial hyperplasia and eosinophil/neu-
trophil infiltration in the colonic mucosa [3]. Further-
more, in a murine model of T-cell independent dextran
sodium sulphate (DSS)-induced colitis IL-33"" mice had
enhanced viability, compared to wild-type controls [19].
In a related study macrophage-specific transgenic mice
that express a truncated TGF-B receptor II under con-
trol of the CD68 promoter (CD68TGF-BDNRII) and
subjected to the DSS model of colitis display an
impaired ability to resolve colitic inflammation but also
an increase in IL-33" macrophages compared to
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controls [79]. In addition, IL-33 mRNA is upregulated
in the ilea and correlates with disease severity in a mur-
ine model of Th1/Th2-mediated enteritis, and induced
IL-17 production from mesenteric lymph node cells sti-
mulated ex vivo [74]. In summary, the IL-33/ST2 path-
way may be an important regulator of UC, but be of
less importance in Crohn’s disease.

Central nervous system (CNS) inflammation

Basal IL-33 mRNA levels are extremely high in the brain
and spinal cord [3], and are elevated under conditions
such as experimental subarachnoid hemorrhage [1].
Furthermore, expression of IL-33 in glial and astrocyte
cultures is increased by Toll-like receptor ligands [80].
Treatment with IL-33 induces proliferation of microglia
and enhances production of pro-inflammatory cytokines,
such as IL-1p and TNFa, as well as the anti-inflamma-
tory cytokine IL-10 [81]. It also enhances chemokines
and nitric oxide production and phagocytosis by micro-
glia. In mice, IL-33 levels and activity were increased in
brains infected with the neurotropic virus Theiler’'s mur-
ine encephalomyelitis virus [80]. Finally, a transcrip-
tional analysis of brain tissue from patients with
Alzheimer’s disease revealed that IL-33 expression was
decreased compared to control tissues [82]. This study
also demonstrated that 3 polymorphisms within the IL-
33 gene resulting in a protective haplotype were asso-
ciated with risk of Alzheimer’s disease [82]. This data is
supported by a study in Chinese population with evi-
dence that genetic variants of IL-33 affect susceptibility
to Alzheimer’s disease [83]. Furthermore, cell-based
assays demonstrate that IL-33 can decrease secretion of
B-amyloid peptides [82]. Thus, IL-33 may have a role in
regulating pathophysiology and inflammatory responses
in the CNS.

Cancer

Although early reports document the expression of ST2
on leukaemic cell lines and on T cell lymphomas of
patients [84,85], very few studies have addressed the
role of IL-33/ST2 signaling on anti-tumor immune
responses, tumor growth and/or metastasis. However, a
recent study demonstrated that ST2”" mice with mam-
mary tumors have attenuated tumor growth and metas-
tasis, with increased circulating levels of pro-
inflammatory cytokines and activated NK and CD8" T
cells [86]. Furthermore, IL-33 induces proliferation,
migration, and morphologic differentiation of endothe-
lial cells, consistent with an effect on angiogenesis [87].
In addition, IL-33 expression is present in endothelial
cells of healthy organs but is strikingly absent from
those in tumors [88]. Therefore, IL-33 may be an
important mediator in tumor escape from immune con-
trol and in tumor angiogenesis and thus warrants
further investigation.
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Figure 2 Schematic representation of the potential pro-inflammatory role of IL-33 in normal skin and in skin inflammation (atopic
dermatitis and psoriasis). Damage to the skin such as by scratching in response to an allergen and inflammation lead to cell necrosis and
release of biologically active IL-33. IL-33 can interact with its receptor ST2L on a number of cell types within the skin, including resident skin cells
and infiltrating immune cells. IL.-33 may drive dendritic cell (DC) mediated polarization of naive CD4™ T cells towards a Th2 phenotype and the
production of cytokines such as IL-5, IL-10 and IL-13. IL-33 can also potently activate innate immune cells such as mast cells (MC) leading to
release of biologically active mediators such as VEGF, histamine and prostaglandin E2 (PGE2). IL-33 can also lead to production of the chemokine
KC, thus recruiting neutrophils (N). An increase in Th17 cells and related cytokines IL-17/22 may be driven by IL-33 stimulation of IL-1 and IL-6
production. Furthermore, IL-33 mediated production of VEGF may drive angiogenesis and skin remodeling.
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Cardiovascular (CV) disease

IL-33 was initially found in the nucleus of the high
endothelial venules (HEV) of secondary lymphoid tissues
[2]. More recently, IL-33 expression has been reported
in coronary artery smooth muscle cells [3], coronary
artery endothelium [89], non-HEV endothelial cells
[88,90], adipocytes [66,91], and in cardiac fibroblasts
suggesting that IL-33 may play a role in various CV dis-
orders [92].

s8T2 as a CV biomarker This concept is supported by
the clinical finding that the IL-33 decoy receptor sST2
was elevated in serum early after acute myocardial
infarction (AMI), and correlated with creatine kinase
and inversely correlated with left ventricular ejection

fraction [93]. Since this primary observation several stu-
dies have since demonstrated the prognostic value of
measuring serum sST2 in various CV diseases, showing
that high baseline levels of sST2 were a significant pre-
dictor of CV mortality and heart failure (HF) (Table 1).
Taken together, these studies indicate that sST2 has the
potential to be a predictive CV biomarker in patients
with AMI, HF and dyspnea. Thus far, serum or plasma
IL-33 has not been measured in CV disease. While
levels are elevated in atopy [67], and some rheumatolo-
gical diseases [57,58], the levels in CV disease are likely
to be low (possibly due to elevated sST2 levels) and dif-
ficult to measure with currently available assays. How-
ever, recent studies have highlighted the development of
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Table 1 Studies examining sST2 in serum/plasma of patients with CV disease
Disease Result Ref.
AMI « sST2 levels were increased in the serum of patients 1 day after AMI. [93]
« ST2 levels predicted subsequent mortality and HF in patients admitted with AMI (TIMI, STEMI & CLARITY-TIMI trials). ~ [103,104]
+ sST2 levels predicted adverse left ventricular functional recovery and remodeling post-AMI. [105]
Acute chest - Measurement of sST2 was of no prognostic value in the prediction of AMI, acute coronary syndromes or 30-day [106]
pain events in patients presenting to the emergency department with chest pain.
HF « PRAISE-2 HF trial and showed that the change in sST2 levels was an independent predictor of subsequent mortality — [107]
or transplantation in patients with severe chronic HF.
« Increased plasma concentrations of sST2 are predictive for 1-year mortality in patients with acute destabilized HF. [108]
+ sST2 levels correlated with the severity of HF and left ventricular ejection fraction. [109]
- Serial sampling of sST2 demonstrated that the % change in sST2 concentrations during acute HF treatment is [110]
predictive of 90-day mortality.
« Elevated sST2 concentrations are predictive of sudden cardiac death in patients with chronic HF. [111]
- Pleural fluid sST2 levels were not helpful for diagnosing effusions due to HF. [112]
+ sST2 levels were lower in decompensated HF patients who did not have a sudden cardiac event. [113]
« sST2 levels were greater in patients with systolic HF than in those with acutely decompensated HF with preserved [114]
ejection fraction.
« Chronic HF patients whose sST2 levels were in the highest had a markedly increased risk of adverse outcomes [115]
compared with the lowest tertile.
Cardiac - Cardiac surgery patients undergoing coronary artery bypass grafting with cardiopulmonary bypass demonstrate a [116,117]
Surgery significant rise in sST2 levels 24 hours after surgery.
Outpatient « In an outpatient study sST2 levels also reflected right-side heart size and function and were an independent [118]
study predictor of 1-year mortality in outpatients referred for echocardiograms.
Dyspnea « sST2 concentration strongly predicted death at 1 year in dyspneic patients. [119-122]
+ sST2 concentrations are associated with cardiac abnormalities on echocardiography, a more decompensated [123]

hemodynamic profile and are associated with long-term mortality in dyspneic patients.

AMI - Acute Myocardial Infarction; HF - Heart Failure

multiplex assays to measure low abundance IL-33 in
serum or plasma and warrant further investigation in
the context of CV disease [94]. In summary, sST2 shows
promise as a biomarker predictive of mortality in several
CV disorders.

Cardiac fibrosis and hypertrophy Studies in animal
models suggest that sST2 is more than just a marker in
CV disease and implicate IL-33/ST2 signaling as an
important protective pathway in various CV diseases. In a
model of pressure overload IL-33 treatment reduced car-
diac hypertrophy and fibrosis, and improved survival fol-
lowing transverse aortic constriction in wild-type but not
ST2”" mice [92]. Furthermore, sST2 blocked the anti-
hypertrophic effects of IL-33, indicating that sST2 func-
tions in the myocardium as a soluble decoy receptor of
IL-33. IL-33 can also reduce cardiomyocyte apoptosis,
decrease infarct and fibrosis, and improve ventricular
function in vivo via suppression of caspase-3 activity and
increased expression of the ‘inhibitor of apoptosis’ family
of proteins [95]. The protective effects of IL-33 may be
limited by the neurohormonal factor endothelin-1, which
increased expression of sST2 and inhibited IL-33 signal-
ing through p38 MAP Kinase [96].

Atherosclerosis During atherosclerosis immune cells
such as monocytes, T cells and mast cells infiltrate

plaques within the intima of the arterial wall [97]. The
disease appears to be driven by a Thl immune response
with cytokines such as IL-12 and IFNy inducing patho-
genesis [98,99]. Thus, it was hypothesized that IL-33 may
have protective effects during atherosclerosis by inducing
a Thl-to-Th2 switch of immune responses. In fact, treat-
ment of ApoE”" mice with IL-33 significantly reduced
atherosclerotic lesion size in the aortic sinus and reduced
plaque F4/80" macrophage and CD3" T cell content [26].
IL-33 treatment increased levels of the Th2 cytokines
IL-4, IL-5, and IL-13 but decreased levels of the Thl
cytokine IFNy in serum and lymph node cells. Further-
more, IL-33-treated ApoE”~ mice also produced signifi-
cantly elevated levels of protective anti-oxidized low-
density lipoprotein (ox-LDL) IgM antibodies. Conversely,
mice treated with intraperitoneal injections of sST2
developed significantly larger atherosclerotic plaques and
enhanced IFNy levels. Thus far, atherosclerosis develop-
ment has not been studied in ApoE”~ or LDLR”" mice
also deficient in genes encoding either IL-33 or ST2 and
these studies are required in order to examine the endo-
genous role of IL-33. Cell-based experiments have also
shown that IL-33 has potent effects on macrophage-
derived foam cell function in vitro providing further evi-
dence for anti-atherosclerotic effects of IL-33 [100].
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Taken together these results indicate that IL-33/ST2 sig-
naling may play a protective role in atherosclerosis.

Obesity and type 2 diabetes Recently, expression of IL-
33 and ST2 was reported in adipocytes and adipose tis-
sues [66,91]. Subsequently it was shown that treatment
of adipocyte cultures in vitro with IL-33 induced the
production of Th2 cytokines (IL-5 and IL-13), reduced
lipid storage and decreased the expression of several
genes associated with lipid metabolism and adipogenesis
(e.g. C/EBPa, SREBP-1c, LXRa, LXRB, and PPARY)
[101]. Furthermore, treatment of genetically obese dia-
betic (0b/ob) mice with IL-33 led to protective metabolic
effects with reduced adiposity, reduced fasting glucose
and improved glucose and insulin tolerance [101]. Con-
versely, ST2”" mice fed high fat diet for 6 months had
increased body weight and fat mass, impaired insulin
secretion and glucose regulation compared to wild-type
controls. The protective effects of IL-33 on adipose tis-
sue appear to be mediated via an increased production
of Th2 cytokines and a switching of macrophage polari-
zation from an M1 to an M2 phenotype (Figure 3).
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More recently, a newly identified population of cells
expressing ST2 were found in adipose named natural
helper cells or fat-associated lymphoid cluster (FALC)
cells that produce large amounts of Th2 cytokines in
response to IL-33 [102], but the direct role of these cells
in obesity is still unclear.

Conclusions

IL-33 appears to be a crucial cytokine for Th2-mediated
host defense and plays a central role in controlling
immune responses in barrier tissues such as skin and
intestine. It is able to activate cells of both the innate
and adaptive immune system, and depending on the dis-
ease can either promote the resolution of inflammation
or drive disease pathology. Manipulation of the IL-33/
ST2 pathway therefore represents a promising new
therapeutic strategy for treating or preventing various
inflammatory disorders. However, many questions
regarding the fundamental biology of IL-33 remain to
be solved, including its nuclear effects and processing
and release of IL-33 from cells. Furthermore, given the
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Figure 3 Schematic representation of the potential ant-inflammatory role of IL-33 in adipose tissue inflammation. Tissue damage
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wide variety of cellular responses regulated by IL-33 and
ST2, and in particular the cardio-protective effects of
I1.-33, this should be approached with caution.
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