
BioMed CentralJournal of Inflammation

ss
Open AcceResearch
Upregulation of prolylcarboxypeptidase (PRCP) in 
lipopolysaccharide (LPS) treated endothelium promotes 
inflammation
My-Linh Ngo1, Fakhri Mahdi2, Dhaval Kolte1 and Zia Shariat-Madar*1

Address: 1School of Pharmacy, Department of Pharmacology, University of Mississippi, Oxford, MS, USA and 2School of Pharmacy, Department 
of Pharmacognosy, University of Mississippi, Oxford, MS, USA

Email: My-Linh Ngo - mdngo@som.umsmed.edu; Fakhri Mahdi - Fmahdi@olemiss.edu; Dhaval Kolte - dskolte@olemiss.edu; Zia Shariat-
Madar* - Madar@olemiss.edu

* Corresponding author    

Abstract
Background: Prolylcarboxypeptidase (Prcp) gene, along with altered PRCP and kallikrein levels,
have been implicated in inflammation pathogenesis. PRCP regulates angiotensin 1–7 (Ang 1–7) –
and bradykinin (BK) – stimulated nitric oxide production in endothelial cells. The mechanism
through which kallikrein expression is altered during infection is not fully understood.
Investigations were performed to determine the association between PRCP and kallikrein levels as
a function of the upregulation of PRCP expression and the link between PRCP and inflammation
risk in lipopolysaccharide (LPS)-induced endothelium activation.

Methods: The Prcp transcript expression in LPS-induced human umbilical vein endothelial cells
(HUVEC) activation was determined by RT-PCR for mRNA. PRCP-dependent kallikrein pathway
was determined either by Enzyme Linked ImmunoSorbent Assay (ELISA) or by biochemical assay.

Results: We report that PRCP is critical to the maintenance of the endothelial cells, and its
upregulation contributes to the risk of developing inflammation. Significant elevation in kallikrein
was seen on LPS-treated HUVECs. The conversion of PK to kallikrein was blocked by the inhibitor
of PRCP, suggesting that PRCP might be a risk factor for inflammation.

Conclusion: The increased PRCP lead to a sustained production of bradykinin in endothelium
following LPS treatment. This amplification may be an additional mechanism whereby PRCP
promotes a sustained inflammatory response. A better appreciation of the role of PRCP in
endothelium may contribute to a better understanding of inflammatory vascular disorders and to
the development of a novel treatment.

Background
Prolylcarboxypeptidase (PRCP) dysfunction is associated
with adverse cardiovascular consequences such as inflam-
mation and hypertension [1,2]. Although the physiologi-
cal role(s) of PRCP is still poorly understood, PRCP has

been shown to be an active participant in processes such
as cell permeability via the activation of prekallikrein (PK)
and the melanogenic signaling pathway [3]. PRCP-
dependent plasma prekallikrein activation influences the
permeability of the endothelium by liberating bradykinin
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(BK) from a protein precursor, high molecular weight
kininogen (HK). BK- mediated bradykinin B 2 receptor
activation leads to the release of nitric oxide and prostag-
landins [4,5]. In addition, PRCP metabolizes angiotensin
II (Ang II) to angiotensin 1–7 (Ang 1–7) and angiotensin
III (Ang III) to angiotensin 2–7 (Ang 2–7). Ang 1–7 -
mediated Ang 1–7 receptor Mas activation causes the
release of prostaglandins and nitric oxide[6]. Thus, PRCP
regulates Ang 1–7 – and BK – stimulated nitric oxide pro-
duction in endothelial cells, highlighting PRCP's role as a
regulatory protease rather than a digestive protease.

Kallikrein (activated prekallikrein) is implicated in many
physiological and pathological processes including the
blood coagulation, the initiation of the classical comple-
ment cascade pathway, as well as activating the alternative
complement pathway [7,8]. Kallikrein is also involved in
induction of elastase release from neutrophils and conver-
sion of prourokinase to urokinase to initiate fibrinolysis [9-
12]. Kallikrein over-expression parallels endothelial lesion,
tissue injury, and sepsis – underscoring the correlation
between kallikrein alterations and inflammation [13-15].
The mechanism by which kallikrein expression is altered
during infection is not fully understood; however, some pos-
sible mechanisms have been postulated by others [16-19].

Of interest, PK is markedly depressed immediately follow-
ing intramural injection of exogenous bacterial compo-
nents to Lewis rats or to normal human volunteers, an
indicator of PK activation[20,21]. The reduction in PK lev-
els has been attributed to the activated factor XII(FXIIa) -
induced plasma kallikrein-kinin system (KKS) activation
via factor XII autoactivation[20,21]. The autoactivation of
factor XII is necessary step to make factor XII susceptible
for cleavage by kallikrein to support activation of the KKS
in plasma as described[22]. Interestingly, activation of PK
is not abolished in patients with factor XII deficiency, sug-
gesting that PK is activated by an uncharacterized mecha-
nism[23]. Since PRCP (a PK activator) is also elevated
during inflammation, we decided to develop an endothe-
lium model of inflammation which would enable us to
determine whether the upregulation of PRCP expression
would cause an increase in the generation of kallikrein.

We document that the upregulation of PRCP in lipopoly-
saccharide (LPS) pretreated endothelial cells results in an
increase kallikrein generation. The implication of this
observation is that PRCP might be an independent risk
factor for inflammation. Furthermore, the upregulation of
PRCP expression might promote inflammation from an
acute to a chronic state through Ang 1–7 – and BK – stim-
ulated nitric oxide production. Inactivation of PRCP-
dependent pathway becomes extremely important in clin-
ical situations such as septic shock and systemic inflam-
mation.

Methods
Materials
Agarose, ladder, 0.5 M EDTA, pH 8.0, ultra pure distilled
water DNase, RNase free and dNTP were purchased from
Gibco BRI (Invitrogen Life Technology, Carlsbad, CA).
Prestained low molecular weight standards, nitrocellu-
lose, and polyacrylamide were all purchased from Bio-Rad
Corp (Richmond, CA). The bradykinin B2 receptor antag-
onist (HOE140, icatibant) was purchased from Peninsula
Laboratories (San Carlos, CA). Markit BK kit was pur-
chased from Dainippon Pharmaceutical (Osaka, Japan).
H-D-Pro-Phe-Arg-p-nitroanilide (S2302) was purchased
from Dia-Pharma (Franklin, OH).

Enzymes, proteins, and biochemicals
Ribonucleotides, deoxyribonucleotides, and restriction
enzymes were purchased from Roche Applied Science
(Indianapolis, IN). RNasin Plus Ribonuclease inhibitor,
RNase-free DNase I, and RNAgents total RNA isolation
system were obtained from Promega (Madison, WI). Oli-
gonucleotide primers for PCR were synthesized at Gibco
BRI (Carlsbad, CA). Platinum-polymerase and taq-
polymerase were purchased from Roche Applied Science.

Single chain HK (MW = 120 kDa on reduced SDS-PAGE)
with a specific activity of 13 U/mg in acetate buffer (4 mM
sodium acetate-HCl and 0.15 M NaCl, pH 5.3) was pur-
chased from DiaPharma Laboratories, Inc. (West Chester,
Ohio). Prekallikrein (PK) with a specific activity of 27 U/
mg was purchased from Enzyme Research Laboratories
(South Bend, IN).

Culture of endothelial cells
Human umbilical vein endothelial cells (HUVEC) were pur-
chased from Clonetics (San Diego, CA) and cultured accord-
ing to the supplier's instructions. Cells displayed typical
staining for the endothelial cell marker, von Willebrand factor
(data not shown). Cellular morphology was typical for
endothelial cells – monolayered 'cobblestone' morphology
and the absence of contaminating fibroblasts. Cells were cul-
tured on a 2 μg/well fibronectin substrate and passaged using
0.1% trypsin-0.02% ethylenediaminetetra-acetic acid (EDTA)
followed by neutralizing trypsin. They were cultured in EGM
medium purchased from Invitrogen Corp (Carlsbad, Califor-
nia) supplemented with 25 U/ml penicillin and 25 μg/ml
streptomycin and 2% heat inactivated fetal calf serum pur-
chased from Hyclone (Logan, UT). Cells at passage numbers
one to five were used at confluence (>3.0 × 104/cm2) 24 h after
seeding. Lipopolysaccharide (E. coli serotype 0111:B4) was
diluted in culture medium, and added to cells to final concen-
trations of 1–1000 ng/ml for 1–24 h.

Lipopolysaccharide (LPS) – induced HUVEC activation
These experiments were performed to determine the sub-
lethal dose of LPS that activates HUVECs. To determine
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LPS-induced cytotoxicity, HUVECs were incubated with
various concentrations of LPS over time. At the end of
stimulation, the lactate dehydrogenase (LDH) release was
performed to test for the loss of plasma membrane integ-
rity by using a LDH diagnostic kit as outlined in the man-
ufacture's instructions. A hallmark of apoptosis is the
onset of DNA fragmentation. Apoptotic cells were deter-
mined by terminal deoxynucleotidyl transferase-mediated
dUTP nick end-labeling (TUNEL) assay under fluores-
cence microscopy. Cells on the slides were fixed in a solu-
tion containing 4% paraformaldehyde and 3% H2O2 for
10 min followed by washing with buffer containing 0.5%
Triton X-100 at 4°C for 2 min. The slides were then incu-
bated with TUNEL reactions at 37°C for 60 min and then
in peroxidase (POD) at 37°C for 30 min. Finally, cells
were stained with DAB (3,3'-diaminobenzidine-tetrahy-
drochloride) and studied microscopically.

Prekallikrein activation on LPS-stimulated endothelial 
cells
LPS (0.3 μg/ml) pretreated confluent monolayers of
HUVEC at 4 × 104 cells density/well in microtiter plate
cuvette wells were washed three times with HEPES-
NaHCO3 buffer [137 mM NaCl, 3 mM KCl, 12 mM
NaHCO3, 14.7 mM Hepes, 5.5 mM Dextrose and 0.1%
gelatin, pH 7.4] containing 2 mM CaCl2, and 1 mM MgCl2
and blocked with 1% gelatin for 1 h at 37°C. After block-
ing, 20 nM HK in the same buffer was added to the mon-
olayers for 60 min at 37°C. At the end of incubation, the
cells were washed and then incubated with PK (20 nM) in
HEPES- NaHCO3 buffer for 60 min at 37°C. Cells were
washed and 0.8 mM H-D-Pro-Phe-Arg-p-nitroanilide
(S2302) (Dia-Pharma, Franklin, OH) was added in the
same buffer and substrate hydrolysis proceeded for 1 h at
37°C. The rate of paranitroanilide liberation from H-D-
Pro-Phe-Arg-paranitroanilide (0.8 mM, S2302) by kal-
likrein was determined by the absorbance at 405 nm [24].
Additional experiments were performed to determine if
increasing concentration of Z-pro-prolinal (PRCP inhibi-
tor) inhibited PK activation.

Measuring the generation of bradykinin by PRCP-
dependent PK activation pathway on LPS-treated 
HUVECs
The generation of BK by PRCP-dependent pathway was
monitored in order to assess the physiological and patho-
physiological role of PRCP. In these experiments,
HUVECs, LPS-treated HUVECs, or PRCP-siRNA trans-
fected HUVECs pretreated with LPS were treated with 1
μM HOE140, and 100 μM lisinopril to block the metabo-
lism of BK by bradykinin B2 receptors and angiotensin
converting enzyme. After 5 minutes of incubation, cells
were incubated with HEPES-NaHCO3 buffer containing
50 nM HK, 50 nM PK in the absence or presence of 1 μM
HKH20 or Z-pro-prolinal. After 1 h of incubation, the

supernatants of these reactions were collected and either
immediately deproteinized with trichlororacetic acid or
frozen at -80°C for further study. BK in the samples was
determined using a commercial kit (Markit BK, Dainip-
pon Pharmaceutical; Osaka, Japan), performed according
to the supplier's instructions.

Permeability determination for the plasma KKS
In vitro cell permeability assay was performed according to
the manufacturer's protocol (CHEMICON, Billerica, MA).
Briefly, endothelial cells (1.0 × 106 cells/ml) were subcul-
tured in the inserts of permeability chambers that were
coated with collagen. Cells were incubated in the tissue
culture incubator at 37°C until they well reached 100%
confluency. Then, the endothelial cell monolayer were
incubated with 300 nM HK, 300 nM PK, or the complex
of HK and PK (300 nM each), 300 nM bradykinin, or 0.3
μg/ml LPS for 3 hours at 37°C in the tissue culture incu-
bator. At the end of incubation, 150 μl of FITC-Dextran
(1:30 dilution) was added to each insert for 5 min at room
temperature, and then 100 μl of the solution in the lower
chamber was transferred to a 96-well plate. The plate was
read in a Perkinelmer (precisely) Envision 2103 Multi-
mode Reader at excitation wavelength of 480 nm and
emission wavelength of 530 nm and with the bandwidth
of 10. Control inserts with cells plated were treated with
HEPES carbonated buffer and used as a control.

Small interfering RNA
The 19-nt siRNA duplex (5'-GACUCCUCUGGUUGAU-
CAUTT-3') used were designed to recognize human PRCP
transcript, and was synthesized at Integrated DNA Tech-
nologies. These unique nucleotide residues within the
PRCP had no identity with known mammalian genes.
Transfection of siRNA into HUVEC was carried out in a
six-well plate using lipofectamine 2000 according to the
manufacturer's instructions (Invitrogen, Carsbad, CA)
and as described [25]. Two microliters of lipofectamine
2000 were diluted in 50 μl of Opti-MEM, and the mixture
was incubated for 5 min at room temperature. For each
well, 2 μl of siRNA (20 μM) were diluted in 50 μl of Opti-
MEM mixed and incubated for 25 min at room tempera-
ture. The siRNA was added to the lipofectamine 2000
solution and mixed. The transfection mixture was added
to each well containing 5 × 104 endothelial cells in sus-
pension and transfections were incubated for 48 h in the
incubator at 37°C, 5% CO2. Then, PK activation was
determined on PRCP-siRNA transfected HUVEC.

Gene expression studies
To define the inflammatory properties of HUVECs, a
panel of nine biomarkers of activated endothelium partic-
ipating in thrombophilia, fibrinolysis, endothelial viabil-
ity, and inflammation was analyzed in LPS-treated
HUVECs. Total RNA from untreated as well as LPS-treated
Page 3 of 9
(page number not for citation purposes)



Journal of Inflammation 2009, 6:3 http://www.journal-inflammation.com/content/6/1/3
HUVEC were isolated and the expression levels of the
endothelial risk factors were analyzed by RT-PCR.

We further determined PRCP expression in LPS-induced
endothelium activation. The objective of this investiga-
tion was to determine whether LPS mediates a concen-
tration- and time-dependent increase in the rate of PRCP
synthesis in LPS-treated endothelial cells. For analyses of
PRCP, endothelial nitric oxide synthase (eNOS), von
Willebrand factor (VWF), tissue plasminogen activator
(tPA), plasminogen activator inhibitor 1 (PAI-1), brady-
kinin B1 receptor (BKB1R), bradykinin B2 receptor
(BKB2R), intercellular adhesion molecule-1 (ICAM-1),
and glyceraldehydes-3-phosphate dehydrogenase
(GAPDH) genes expression levels, RNA was extracted
from cell monolayers using Trizol (Invitrogen Corp.,
Carlsbad, CA) in accordance with the manufacturer's
specifications. RNA was then treated with DNAse I
(Ambion Inc., Austin, TX) to eliminate genomic DNA
contamination. cDNA was derived from HUVEC
exposed to LPS to give expression levels of the genes of
interest using Super Script II or III RNase H-Reverse Tran-
scriptase (Invitrogen Corp.).

Primers used in the RT-PCR analyses were designed based
on published gene sequences. Annealing temperatures
used for all were 60°C. PCR product length in base pairs
(bp) is indicated, and all PCR products were isolated,
sequenced, and assessed against published human
sequences using NCBI Blast to confirm they represented
products from the genes of interest. The list of primers
used in our investigations is tabulated in Table 1.

Statistical analyses
Results are expressed as mean ± SEM, and data was ana-
lyzed using Student's t-test for significant difference. Sta-
tistical significance was defined as P < 0.05.

Results
Characterizing endothelium model of inflammation
PRCP expression is up-regulated during inflammation
[2,3]. Emerging evidence suggests that lipopolysaccharide
(LPS) activates the plasma kallikrein-kinin system in the
choroid plexus [26]. The mechanism by which kallikrein
expression is altered during infection is not fully under-
stood. In endothelium, PRCP converts prekallikrein (PK)
to kallikrein [24]. We decided to develop an endothelium
model of inflammation, which would enable us to assess
whether the upregulation of PRCP expression would
cause an increase in kallikrein generation.

To develop cell model of inflammation, human umbilical
vein endothelial cells (HUVEC) were treated with LPS. A
hallmark of apoptosis is the onset of DNA fragmentation.
To determine the sub-lethal dose of LPS, we used terminal
deoxynucleotidyl transferase-mediated dUTP nick end
labeling (TUNEL) technique to assess DNA fragmentation
during apoptosis. 44% of cells incubated with 25 μg/ml
LPS for 3 h showed brown grains (typical features of apop-
tosis) after incubating with DAB (3,3' -diaminobenzidine-
tetrahydrochloride) (Table 2).

To determine cell viability, the lactate dehydrogenase
(LDH) release (Promega, Madison, WI) was measured.
LDH release assay showed that the endothelium plasma
membrane integrity was intact after the LPS (0.2 μg/ml)
stimulation for 16 h. Cell viability assay along with phe-
notypic observation of apoptosis under microscopy sug-
gested that 1 μg/ml LPS stimulated cells did not induce
cell apoptosis.

von Willebrand factor (VWF) expression is up-regulated
during endothelial cell activation. Since the concentration
of LPS in plasma or blood of patients with sepsis is about
200 ng/ml, we treated HUVEC with LPS (0.2 μg/ml) at dif-

Table 1: Primer pairs used to analyze the expression of nine biomarkers of coagulation activation, fibrinolysis, endothelial injury, and 
inflammation.

Sense primer Position 
On cDNA

Antisense primer Position 
on cDNA

PCR 
Product 
Length

(bp)

PRCP 5'-ATGGGCCGCCGAGCCCTCCTG-3' 114–134 5'-GGTTGGTTGGCAAGTGTAGG-3' 225-206 111
BKB1R 5'-CACTTTGCAAGGATGGTGGAGTTG-3' 764–787 5'-GGAGGCCAGGATGTGATAGTTGAA-3' 853-830 89
BKB2R 5'-CTGGGTGTTTGGAGAGGTGT-3' 479–499 5'-ACGAGCATCAGGAAGCAGAT-3' 565-545 86
tPA 5'-GGCTGTGGACAGAAGGATGT-3' 1676–1695 5'-TGCACTCTTCCCTCTCCTGT-3' 1909-1890 233
PAI-1 5'-CAGACCAAGAGCCTCTCCAC-3' 1073–1092 5'-GACTGTTCCTGTGGGGTTGT-3' 1254-1235 181
ICAM-1 5'-GGCTGGAGCTGTTTGAGAAC-3' 644–663 5'-ACTGTGGGGTTCAACCTCTG-3' 845-826 201
vWF 5'-TGCTGACACCAGAAAAGTGC-3' 3343–3362 5'-AGTCCCCAATGGACTCACAG-3' 3539-3520 196
eNOS 5'-AGCATCCCTACTCCCACCA-3' 419–437 5-'ACCTCCCAGTTCTTCACACG-3' 520-501 101
GAPDH 5'-GAGTCAACGGATTTGGTCGT-3' 122–141 5'-GACAAGCTTCCCGTTCTCAG-3' 306-287 184

Primers were designed based on the cDNA sequences of human genes.
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ferent times (1, 2, 3, 8, 16, and 24 h) to determine VWF
upregulation. VWF transcript was significantly increased
in LPS – treated HUVEC within 16 h suggesting the activa-
tion of HUVEC. Thus, the time point (16 h) and dosage
(0.2 μg/ml) became the standard in subsequent experi-
ments.

To further define the inflammatory properties of
HUVECs, a panel of nine biomarkers of activated
endothelium participating in thrombophilia, fibrinolysis,
endothelial viability, and inflammation was analyzed in
LPS-treated HUVECs. Total RNA from untreated as well as
LPS-treated HUVEC was isolated, and the expression lev-
els of the endothelial risk factors were analyzed by RT-PCR
(Table 3). Significant elevation of the mRNA of bradyki-
nin B 1 receptor (BKB1R), ICAM 1, VWF, PAI-1 was
present in LPS-treated endothelial cells within 16 h. How-
ever, the mRNA of bradykinin B 2 receptor (BKB2R) and
eNOS was slightly decreased. These data suggested that
0.2 μg/ml LPS would transform quiescent HUVECs into
an inflammatory stage.

LPS enhances prekallikrein activation on HUVEC
Previous investigations have suggested that the kallikrein-
kinin system [KKS, the heteromeric dimer of HK and PK]
of blood coagulation contributes to thrombogenicity of
atherosclerotic plaque as well as angiogenesis in inflam-
mation and cancer [27-29]. We analyzed the response of
PRCP-dependent PK pathway in endothelial cells exposed
to LPS by using combined molecular and biochemical
approaches.

To test the effect of LPS on PRCP expression and activa-
tion, confluent monolayers of HUVECs were pretreated
with LPS (0.2 μg/ml) for 16 h at 37°C. Using GAPDH as
external control, the relative expression of PRCP mRNA in
LPS-HUVEC was two-fold higher than in HUVEC (Figure
1A). The induction of Prcp tanscript in response to LPS is
reported here for the first time. The mechanisms account-
ing for the robust PRCP expression seen in these cells
remains speculative. PK activation on HK bound to
HUVEC was significantly (p < 0.01) higher on LPS pre-
treated cells than on untreated cells. Z-Pro-Prolinal (0.7
mM) blocked PRCP-dependent PK activation by twofold
(Figure 1B). Since a specific and an irreversible inhibitor
of PRCP was not available, investigations were performed
to determine the effect of PRCP-siRNA on PRCP-depend-
ent PK activation. PK activation was reduced by 45% on
PRCP-siRNA transfected cells. The modest reduction of PK

Table 2: LPS-induced apoptosis of endothelial cells.

Lipopolysaccharide
(μg/ml)

Ratio of apoptosis
(%)

Control 4.0 ± 1.0
1 5.0 ± 2.0
10 8.0 ± 2.0
25 44 ± 3.0

Table 3: Total RNAs from untreated and LPS-treated 
endothelial cells were isolated and reverse transcribed.

Biomarker
(mRNA)

RT-PCR products Intensity (arbitrary Unit)

HUVEC LPS-HUVEC

BKB1R 0 57
BKB2R 320 234

AT1 127 258
AT2 340 560
tPA 243 340

PAI-1 402 905
VWF 297 844

ICAM-1 0 97
eNOS 176 105

PCR products were resolved in 1% agarose gel and detected by 
ethidium bromide. The intensity of PCR products were quantified 
after normalizing to GAPDH. Bradykinin B1 receptor; BKB1R, 
Bradykinin B2 receptor; BKB2R, angiotensin type 1 receptor; AT1, 
angiotensin type 2 receptor; AT2, tissue plasminogen activator; tPA, 
plasminogen activator inhibitor 1; PAI-1, von Willebrand factor; VWF, 
intercellular adhesion molecule-1; ICAM, endothelial nitric oxide 
synthase; eNOS.

LPS enhances prekallikrein activation and PRCP expression in HUVECFigure 1
LPS enhances prekallikrein activation and PRCP 
expression in HUVEC. Panel A: total RNA was isolated 
from HUVEC and LPS treated HUVEC (LPS-HUVEC) cells 
and then amplified by RT-PCR. Amplified DNA (100 bp frag-
ment) was resolved on a 1.5% agarose gel. Panel B: 20 nM 
PK in the absence or presence of inhibitor was incubated 
with 20 nM HK bound to untreated, LPS-pretreated, or 
PRCP-siRNA transfected cells pretreated with LPS at 37°C. 
The liberation of paranitroanilide (pNA) from substrate 
(S2302) by kallikrein was measured at 405 nm. *p < 0.01 vs. 
untreated cells. The presented are the mean ± SEM of tripli-
cate points of 10 independent experiments.
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activation on the PRCP-siRNA transfected cells could be
due to poor transfection efficiency in HUVECs. However,
our observations suggest that LPS potentiates PRCP
expression and activity. The increase in PRCP activity led
to a two-fold increase in the generation of kallikrein,
which was blocked by z-Pro-Prolinal in LPS pretreated
endothelial cells. These data raise the possibility that there
is a causal relationship between PRCP expression and kal-
likrein generation.

Bradykinin liberation on LPS-treated HUVEC
Investigations next proceeded to determine whether the
upregulation of PRCP-dependent PK activation would
lead to an increase in bradykinin (BK) generation on LPS-
treated HUVEC. As shown in Figure 2, BK (11.2 × 106

pmol/106 HUVEC) was released into incubation buffer
when the complex of HK/PK was assembled on HUVEC.
However, LPS activated the PRCP-dependent PK pathway
by enhancing liberation of BK (16.7 × 106 pmol/106

HUVEC) in HUVEC (Figure 2). The amount of BK gener-
ation was 40 percent higher on LPS-treated cells than on
untreated cells. No BK was detected in the absence of

added HK or PK. The extent of BK liberation from the
assembly of PK on HK was abolished by the presence of
HKH20 (HK cell binding site) suggesting that HK/PK
binding to LPS-treated cells is essential in regulating
endothelium function (Figure 2). Z-pro-prolinal (1 mM)
inhibited the formation of BK by 60%.

By utilizing siRNA, we determined that PRCP plays a func-
tional role in PK activation and bradykinin generation.
We analyzed BK generation on cells transfected with
PRCP-siRNA for 48 hours. As shown in Figure 2, downreg-
ulation of PRCP in cells transfected with 100 nM siRNA
targeting PRCP resulted in 40–50% reduction in BK gen-
eration. The inability of siRNA to block BK levels by 100%
might be due to the poor transfection efficiency in
HUVEC. These results suggest that PRCP may contribute
to the risk of developing inflammation.

In vitro endothelial cell permeability
Having established that LPS potentiates PRCP expression
and subsequently causes an increase in BK generation, we
next determined if this process would influence endothe-
lial cell permeability. The effects of bradykinin, HK, PK, or
the HK-PK complex on both HUVEC permeability and on
human pulmonary vein endothelial cell (HPVEC) perme-
ability were determined by quantifying the permeability
of FITC-Dextran through the cell monolayer. As shown in

PRCP-dependent prekallikrein (PK) activation and bradykinin (BK) liberation on LPS-treated HUVECFigure 2
PRCP-dependent prekallikrein (PK) activation and 
bradykinin (BK) liberation on LPS-treated HUVEC. 
Untreated, LPS-pretreated, or PRCP-siRNA transfected cells 
pretreated with LPS were incubated with 100 nM HK alone 
or in the presence of 1 μM HKH20 in HEPES buffer contain-
ing 2 mM Ca2+ and 1 mM Mg2+ at 37°C for 60 min. After-
ward, 100 nM PK with 1 μM lisinopril [angiotensin-
converting enzyme inhibitor (ACE)] and 1 μM HOE 140 
(bradykinin B2 receptor antagonist) was added and incubated 
with HUVEC at 37°C for 60 min in the same buffer. Forty-
eight hours after transfection with 100 nM PRCP-siRNA or 
control, cells were incubated with HK and PK and assessed 
for BK generation as described above. After PK activation on 
HUVEC, the buffer from each of the wells was collected and 
deproteinized by treatment with trichloroacetic acid. The 
data are from three experiments (means ± SEM).
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Influence of the plasma kallikrein-kinin activation on 
endothelium monolayer permeability. Endothelial cells 
(1.0 × 106 cells/ml) were seeded in the inserts of permeability 
chambers that were coated with collagen. The endothelial 
cell monolayer were incubated with 300 nM HK, 300 nM PK, 
or the complex of HK and PK (300 nM each), 300 nM brady-
kinin, or 0.3 μg/ml LPS for 3 hours at 37°C in the tissue cul-
ture incubator. Then, 150 μl of FITC-Dextran (1:30 dilution) 
was added to each insert and incubated for 5 min at room 
temperature. The presence of FITC-Dextran (1:30 dilution) 
in the lower chamber was determined by a Perkinelmer (pre-
cisely) Envision 2103 Multimode Reader at excitation wave-
length of 485 nm and emission wavelength of 530 nm.
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Figure 3, the complex of HK-PK (300 nM each, physio-
logic concentration), BK (300 nM), or LPS (2 μg/ml)
increased endothelial monolayer permeability. No detect-
able permeability was seen when HUVEC or HPVEC mon-
olayer was treated with buffer containing FITC-Dextran,
indicating the occlusion of the membrane pores by the
endothelial monolayer. Using a different permeability
assay, others also have shown that addition of BK could
cause a significant increase in permeability to fluorescein
isothiocyanate-labeled human serum albumin in
HUVEC[30,31]. As shown in Figure 3, the induction of
cell permeability by BK or the HK-PK complex in HUVEC
was lower than in HPVEC by two orders of magnitude,
under our experimental conditions. The cellular basis for
the differing cell permeability responses of HUVEC and
HPVEC is not known. However, we cannot exclude the
possibility that the expression of BK receptor subtypes on
HUVEC is different than that of HPVEC, because such an
observation has been described on other endothelial cell
types[32]. In primary HUVECs and HPVEC, 2 μg/ml LPS
significantly increased the permeability of FITC-Dextran
through the cell monolayer. The robust permeability of
FITC-Dextran through the cell monolayer by LPS might be
due to cell detachment as suggested by Bannerman[33].
Neither HK – nor PK- induced permeability of FITC-Dex-
tran through the monolayer of HUVEC or HPVEC (data
not shown). These findings indicate that PRCP enhances
cell monolayer permeability through activation of plasma
kallikrein-kinin system which generates BK.

Discussion
Prolylcarboxypeptidase (PRCP) activates prekallikrein
(PK) to kallikrein leading to the generation of bradykinin
(BK) from high molecular weight kininogen (HK)[24].
Prcp gene along with altered PRCP and kallikrein levels
have been implicated in inflammation pathogenesis. PK is
significantly depressed immediately following intramural
injection of exogenous bacterial components to Lewis rats
or to normal human volunteers suggesting the potential
activation of PK to kallikrein by the activated factor XII
[20,21]. However, the activation of PK is not abolished in
patients with factor XII deficiency, suggesting that PK is
activated by an uncharacterized mechanism[23]. The
mechanism by which kallikrein expression is altered dur-
ing infection is not fully understood.

The aim of the present study was to determine the associ-
ation of PRCP and kallikrein levels as a function of the
upregulation of PRCP expression and the link between
PRCP and inflammation risk in lipopolysaccharide (LPS)-
induced endothelium activation. The major finding of our
current investigation was that the stimulation of endothe-
lial cells by LPS resulted in a significant upregulation of
PRCP mRNA expression. The activation of PK to kallikrein
was also enhanced on LPS-treated HUVECs. The amount

of BK generation was significantly higher on LPS-treated
cells than on untreated cells. PRCP enhanced cell monol-
ayer permeability through activation of plasma kallikrein-
kinin system which generates BK. The down-regulation of
PRCP by PRCP-siRNA markedly blocked both kallikrein
and bradykinin (BK) generation on LPS-pretreated
HUVECs. Thus, the present study extends the role of
PRCP-dependent PK activation into inflammatory reac-
tions.

Physiologically, BK is a cardioprotective peptide. How-
ever, uncontrolled BK – stimulated nitric oxide produc-
tion could promote endothelial dysfunction. Experiments
were performed to determine if PRCP-dependent PK acti-
vation would result in an increase in BK generation on
LPS-treated HUVECs. BK generation was significantly
higher on LPS-pretreated cells than on untreated cells
indicating that PRCP modulates BK generation. The
present findings suggest that the upregulation of PRCP
can lead to an increase in BK generation in response to
LPS-induced endothelial cell activation, and we therefore
believe that PRCP might promote inflammatory response.
PRCP inhibitors could represent a novel therapeutic pos-
sibility to reduce inflammation.

We observed elevated proinflammatory and endothelial
dysfunction indices such as BKB1R, ICAM-1, and VWF
expression in endothelium following LPS treatment. Tis-
sue plasminogen activator inhibitor 1 (PAI-1) expression
which counteracts tissue plasminogen activator (tPA)
activity was also significantly increased in LPS-stimulated
endothelium confirming the development of impaired
fibrinolytic system and endothelium activation, a phe-
nomenon found in patients with severe sepsis [34]. Of
interest, endothelium activation and thrombophilia were
coincided with the PRCP expression levels in LPS-pre-
treated endothelium. Incubation of LPS-pretreated
endothelium with PK alone resulted in no S2302 (kal-
likrein substrate) hydrolysis suggesting that the PK activa-
tion on LPS-treated HUVEC was not due to PK
autoactivation. Our data suggested that there was a causal
relationship between LPS-induced endothelium activa-
tion and PRCP-dependent PK over-activation.

It has been suggested that the root of vascular disease is
due to the increased breakdown of nitric oxide and
uncoupling of nitric oxide synthase, the two factors
observed in hypertension due to having blunted endothe-
lial vasorelaxation [35,36]. Nonetheless, endothelial dys-
function may involve integrated multi-factorial agents/
factors including ROS, angiotensin II, and aldosterone
levels [37,38]. PRCP is involved in inflammation patho-
physiology, but the intracellular signalling leading to the
up-regulation of PRCP is unknown. Therefore, it is likely
that upregulation of PRCP expression during inflamma-
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tory state might be to sustain vasodilation and promote
repair by enhancing liberation of nitric oxide and prosta-
cyclin (PGI2), the two factors generated by the metabo-
lites of PRCP.

During systemic inflammation, uncontrolled activation of
PRCP may lead to a robust kallikrein and bradykinin gen-
eration which might affect blood vessel integrity. In LPS-
treated endothelium, the mRNA for bradykinin B1 recep-
tor was upregulated which may sensitize endothelium to
BK mediated permeability. The suppressed activity of
angiotensin converting enzyme (ACE) has been docu-
mented in cultured endothelial cells during inflammatory
challenge [39-41]. ACE inactivates a number of peptide
mediators, including BK. If ACE levels are down-regu-
lated, bradykinin levels are higher. The reduced ACE activ-
ity feed-forward mechanism forms a vicious circle to
amplify and sustain a large flux of BK arising from PRCP-
dependent PK activation (Figure 4). PRCP is functionally
specialized for hemostasis and its expression might be reg-
ulated at the initial phase of acute inflammation.

The bradykinin B 1 receptor (BKB1R) expression was
upregulated in LPS-induced endothelial cell activation.
BKB1Rs are activated by des-Arg9-bradykinin, which is
produced from BK by thrombin-activatable fibrinolysis
inhibitor (TAFI), carboxypeptidase N and carboxypepti-
dase M[42,43]. Regardless of the triggers of inflammation,
BKB1R is induced only following inflammatory insult.
This amplification may be an additional mechanism
whereby PRCP promotes a sustained inflammatory
response. Of note, PRCP has the ability to metabolize des-
Arg9-bradykinin in in vitro study. Thus, PRCP might influ-
ence the balance of BKB2R and BKB1R signaling in

endothelial cells by blocking BKB1 receptor-mediated
effects. It will be of interest to determine if PRCP plays a
pathophysiological role in modulating des-Arg9-bradyki-
nin in infection and in other clinically relevant disease sit-
uations.

Conclusion
In conclusion, the data presented in this report supported
the idea that PRCP contributed to the initiation of events
associated with LPS-stimulated endothelial cells activa-
tion. Furthermore, the upregulation of PRCP expression
was related to the intensity of kallikrein generation on
endothelium (Figure 4). Further investigations must be
performed to determine mechanistically how PRCP
expression is upregulated in LPS-induced endothelium
activation. However, our novel data underline the impor-
tance of PRCP in inflammation and in endothelial dys-
function, but its predictive value in inflammation needs
to be further investigated.
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