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Abstract

Background: The mechanisms responsible for the development of allergic rhinitis(AR) are not
fully understood. The present study was designed to explore the possible roles of carbon
monoxide(CO) on the pathogenesis of AR.

Methods: AR guinea pig model was established by nasal ovalbumin sensitization. Twenty-four AR
guinea pigs were divided into four groups, 6 in each: Saline control group, AR sensitized group,
Hemin treated group, and Zinc protoporphyrin (ZnPP) treated group. The frequency of sneezing
and nose rubbing was recorded. Leukocyte infiltration in nasal lavage fluid, serum IgE level and
plasma CO were measured. Expression of heme oxygenase-1 (HO-1) mRNA in nasal mucosa was
determined by real time RT-PCR, and expression of HO-| protein was detected by
immunohistochemistry.

Results: The frequency of sneezing and nose rubbing, leukocyte infiltration, serum IgE, plasma CO,
and HO-I mRNA levels in sensitized guinea pigs were higher than those of control (P < 0.05).
Except for serum IgE level, all above parameters were even higher (P < 0.05) when treated with
Hemin, a heme oxygenase- | inducer; but significantly decreased (P < 0.05) when treated with ZnPP,
a heme oxygenase inhibitor. Immunohistochemical results showed that positive staining of HO-|
was present in the lamina of mucosa of sensitized guinea pigs, and there was an increase of HO-|
immunoreactivity with Hemin administration (P < 0.05) and a decrease with ZnPP treatment.

Conclusion: The endogenous CO may take part in the inflammation process of AR and is
positively correlated with expression of HO-1 in nasal mucosa. Endogenous CO plays a significant
role in the pathogenesis of AR.
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Background

Research on the role of the gas signal messenger such as
nitric oxide (NO) and carbon monoxide (CO) in allergy
medicine is a rapidly emerging field. Important roles of
CO have been identified in many physiological and path-
ological processes relating to vasomotion, cell growth,
even apoptosis [1,2]. CO is mainly produced by enzyme
heme oxygenase (HO), which has been found to be
expressed in almost all human tissues and organs. HO
consists of three isozymes: HO-1, HO-2 and HO-3. HO-1,
which is known as inducible form of heat shock protein
32 (HSP32), has been implicated in the regulation of res-
piratory tract inflammation [3]. HO-2 is constitutively
expressed in many mammalian cells. HO-3 is also a con-
stitutive isoform of HO. Both HO expression and CO level
in the airways increase in response to hypoxic challenge
and to a wide variety of inflammatory stimuli such as
asthma and allergic rhinitis [4], and the expression of HO-
1, but not HO-2, is upregulated in the nasal mucosa with
allergic rhinitis [5].

In some airway inflammations such as asthma, induction
of HO-1 may lead to highly exhaled CO concentrations,
which is often observed and closely associated with
chronic inflammation [6]. However, information about
CO-induced effects involved in allergic rhinitis airway
inflammation is rarely documented. The current study
was designed to investigate the role of HO-1 in allergic
rhinitis. Hemin (Ferriprotoporphyrin IX chloride), an
iron containing metalloporphyrin and a substrate for HO-
1, was used to increase CO level and expression of HO-
1[7]. HO antagonist, zine protoporphyrin (ZnPP) was
used to down-regulate HO [8]. The frequencies of sneez-
ing and nose rubbing of guinea pigs, which represented
nasal irritation, were recorded. As symbol of inflamma-
tion, levels of leukocyte infiltration in nasal lavage fluid
and IgE in serum were detected. Thus, our study may facil-
itate a better understanding of the formation of HO-1-
mediated inflammation in allergic rhinitis.

Methods

Materials and animal models

Twenty-four adult healthy male Hartley guinea pigs (230-
280 g) were purchased from National Rodent Laboratory
Animal Resources, Shanghai Branch, China. Animal mod-
els of allergic rhinitis were prepared according to the
method from Al Suleimani M [9]. Guinea pigs(n = 18)
were initially exposed to 1% ovalbumin (10 mg/kg, Sigma
Inc.MD) in saline given as a 1% aerosol twice for 10 min
each, 7 days apart. On days 14, 15 and 16, a booster of 1%
ovalbumin in saline was instilled intranasally at a volume
of 20 pl/nostril/day into both nostrils. On day 21 guinea
pigs were challenged with 2% ovalbumin in saline
instilled intranasally at a volume of 20 pl/nostril in each
nostril. Eighteen guinea pigs were sensitized and divided
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into three groups. In the first group, animals(n = 6) were
challenged intranasally with 2% ovalbumin. In the sec-
ond group, named as Hemin group, animals(n = 6) were
intraperitoneally administered Hemin (Sigma Inc.MD) at
a dose of 10 mg/kg/day 12 h after every nose inspiration
with ovalbumin and continual for two weeks. In the third
group, named as ZnPP group, animals(n = 6) were intra-
peritoneally dministered ZnPP (Sigma Inc.MD) at a dose
of 6 mg/kg/day immediately after every nose inspiration
with ovalbumin and continual for two weeks too. Control
animals(n = 6) were initially exposed to saline given as an
aerosol twice for 10 min each at first stage, then were
intranasally challenged by saline under the same condi-
tions at a volume of 20 pl/nostril in each nostril at second
stage.

Observation of sneezing and nose rubbing and assessment
of leukocyte infiltration

Frequencies of sneezing and nose rubbing were assessed
as previously described by Al Suleimani M with modifica-
tions [9]. The numbers of sneezing and nose rubbing were
counted for 30 min directly following nasal challenge. A
sneeze was characterized by an explosive expiration just
after deep inspiration. A nose rub was characterized by an
external perinasal scratch with the animal's forelimbs.
Nasal lavage fluid (NLF) was collected [9] at 1 h post-chal-
lenge. Nasal cavities were washed with 2 ml of pre-
warmed saline infused from the tracheal side. NLF was
collected from the anterior naris. Total cell count was
assessed using a standard hemocytometer. Leukocytes
were counted under light microscope at power 40x, using
the following formula: Number of cells/ml = total
number of cell counted x dilution factor x 1000/total vol-
ume counted (0.1 mm3)

Determination of Plasma CO and serum IgE

Guinea pigs were anesthetized by intraperitoneal admin-
istration of pentobarbital (40 mg/Kg). 1 ml blood was col-
lected from the heart through direct cardiac puncturatio,
avoiding air contact. Concentration of COHb, which rep-
resented CO content in plasma, was measured using gas
chromatography as described by Chalmers with spec-
trometer (Lambda Bio, Perkin Elmer Inc, MD)[10]. The
guinea pigs were sacrificed by rapid decapitation, and
blood and nasal mucosa were collected. Biopsies of nasal
mucosa were taken from the inferior turbinate and put in
liquid nitrogen immediately. Some of the nasal mucosa
were fixed in 10% formalin for immunohistochemistry
analysis. Serum IgE levels of guinea pigs were determined
by ELISA methods (RB Inc.MD).

Immunohistochemistry assay

Tissues from the specimens were fixed in 10% buffered
formalin. Immunohistochemical stains were performed
on formalin-fixed and paraffin-embedded 4 um sections.
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The tissue sections were deparaffined, and antigen
retrieval conditions included 0.1 M citrate buffer (pH 6.0)
in an 800-W microwave oven for 15 minutes. The sections
were incubated in 3% hydrogen peroxidase to quench
endogenous tissue peroxidase for 5 minutes. The tissue
sections were then incubated with a rabbit monoclonal
antibody against HO-1 for 30 minutes at room tempera-
ture (1:1000 dilutions, Santa Cruz Inc.MD). The slides
were stained in an automated immunostainer using a
standard avidin-biotin complex staining procedure. Neg-
ative controls were performed for all cases and consisted
of identically prepared slides that were treated with anti-
body diluents in place of primary antibody, but otherwise
subjected to the same immunohistochemical staining
protocol.

For quantification of HO-1 immunoreactivity, high reso-
lution digital images were obtained from each biopsy, so
that the entire mucosal area was captured. The immuno-
reactive score was applied for calculating the immunore-
activity of HO-1, which equaled the product of the
percentage of positive cells times the average staining
intensity. Percentage of positive cells was graded as fol-
lows: 0 = negative, 1 = up to 10% positive cells, 2 = 11 to
50%, 3 = 51 to 80%, 4 = >80%. Staining intensity of 0 =
negative, 1 = weakly positive, 2 = moderately positive, 3 =
strongly positive.

Total RNA extraction and cDNA synthesis

Samples of nasal mucosa were shipped and stored at -
80°C. They were minced with a scalpel on dry ice, trans-
ferred immediately to 2 ml polypropylene tubes, and
homogenized. Total RNA was extracted using Trizol™ rea-
gent (Invitrogen Inc, MD) following the manufacturer's
instructions. The concentration and purity of RNA were
determined spectrophotometrically. Then the synthesis of
c¢DNA was performed according to a cDNA synthesis kit
(PrimeScript RTase, TaKaRa Inc, Japan).

Real time Reverse Transcriptase-Polymerase Chain
Reaction (RT-PCR) for HO-1 mRNA Expression

To determine the expression of the HO-1 gene in nasal
mucosa, fluorescent quantitative real time RT-PCR assay
was performed. The sequences of the primers (TaKaRa Inc,
Japan) specific for HO-1 were performed with sense
(GAAGGAGGCCACCAAGGAGG) and antisense (AGGT-
CACCCAGGTAGCG GGA) primers, with an expected size
of the amplified sequence of 370 bp. B-actin was used as
control (sense: ACCCTTAAGGCCAACCGTGAAAAG, anti-
sense: TCATGAGGTAG TCTGTCAGGT, 240 bp). Then the
incubation of cDNA and primer was performed at 95°C
for 5 min, and the PCR reaction proceeded for 45 cycles:
95°Cfor20s,57°Cfor20s,and 72°Cfor 20, and a final
incubation at 72°C for 7 min in a programmable thermal
cycler (Line-Gene real-time PCR detection system, bioer
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Inc, China) using a thermostable Taq DNA polymerase
(SYBR PrimeScript Ex Taq, TaKaRa Inc, Japan). Fluores-
cent product was measured by a single acquisition at 86°C
after each cycle. After the completion of PCR amplifica-
tion, a melting curve analysis was performed. Fig. 1 shows
a sharp peak with a melting temperature (Tm) of HO-1 of
92°C and B-actin of 90°C. For each sample, the amounts
of the target and control (B-actin, a housekeeping gene)
were determined. The typical amplification curves of real-
time RT-PCR for HO-1 and B-actin mRNA are shown in
Fig. 2. The amount of the target was then divided by the
amount of the endogenous reference, to obtain a normal-
ized target value. The PCR products were visualized and
photographed under ultraviolet light by staining with
ethidium bromide on 1.5% agarose gels.

Statistics

All data were expressed as mean + S.D. Statistical analyses
of data were performed using ANOVA for multiple com-
parison and LSD for comparison among groups, and Pear-
son Correlation for the two-variable correlation analysis.
P < 0.05 was considered to be statistically significant.

Results

Concentration of COHb in plasma

The plasma COHb level of AR group was higher than that
of non-sensitized group (p < 0.01), which confirmed the
results of previous research. COHDb level increased signifi-
cantly after being treated with Hemin, and decreased after
ZnPP administration as compared with AR group (p <
0.05) (Fig. 3).
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Figure |

The typical amplification and melting curves of real-
time RT-PCR for HO-1 (A) and B-actin(B). The figure
shows a sharp peak with a melting temperature of HO-| of
92°C and B-actin of 90°C.
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Figure 2

Cycles of HO-1 (A) and B-actin (B). The vertical axis
represents the degree of amplification by SYBR-Green fluo-
rescence and the horizontal axis represents the number of
amplification cycles. Fig 2A:With 45 cycles, the groups have
different amplification of HO-1. For the four curves from left
to right: Hemin group, AR group, ZnPP group, control group.
It indicate the amounts of PCR pruducts were Hemin group
> AR group > ZnPP group > control group. Fig 2B:With the
same cycle number, the groups have similar amplification of
B-actin.

Sneezing, nose rubbing and leukocyte infiltration

Sneezing frequency and number of nose rubbing in sensi-
tized AR group were significantly increased (p < 0.01) as
compared with those in non-sensitized group, and
increased further in Hemin treated group as compared
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Figure 3

The blood COHb level of groups. Each column and verti-
cal bar represents the mean * S.D. ***: Significantly different
from the control group (p < 0.05 and p < 0.01, respectively).
#,### Significantly different from the AR group (p < 0.05 and

p < 0.01, respectively).
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with those in AR group(p < 0.05), but significantly
decreased in ZnPP treated group(p < 0.05) (Fig. 4). In AR
group, there was a significant increase of total cell count
in NLF (p < 0.01), especially eosinophil and neutrophil as
compared with those in non-sensitized groups. Total cell
count significantly increased after Hemin treatment and
decreased after ZnPP treatment (p < 0.05) as compared
with AR group.

Change of IgE in serum

Serum IgE levels in sensitized AR groups were significantly
increased (p < 0.05) as compared with those in non-sen-
sitized group. but no significant differences of IgE were
observed among groups of AR, Hemin and ZnPP(p >
0.05) (Fig. 5).

Immunohistochemical staining for HO-1

The yellow-brown cytoplasm represented positive signals
of HO-1 expression. Positive granules were not observed
in the control group(Fig. 6) but found expressed in aller-
gic nasal mucosa, and those were distributed mainly in
the cytoplasm of seromucous glands, mesenchymal cells
and inflammatory cells in lamina (Fig. 7), which. Cyto-
plasmic staining was also seen in endothelial cells lining
dilated vessels. No HO-1 expression was found in respira-
tory epithelium and cartilage in either group (Fig. 8). Neg-
ative control sections gave no detectable staining. Strongly
positive staining was present in nasal mucosa of Hemin
group and weak expression of HO-1 was observed in lam-
ina of mucosa of ZnPP group (Fig. 9 and 10).

The total immunoreactivity for HO-1, in relation to the
area of mucosal tissue, was 0.50 + 0.54 in controls (n = 6),
3.33 + 0.81 in guinea pigs after allergen challenge (n = 6),

Numbers
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(=3
%
.

control AR Hemin ZnPP

Figure 4

The Sneezing, nose rubbing and leukocyte infiltration
of guinea pigs. Each column and vertical bar represents the
mean % S.D. ***: Significantly different from the control
group (p < 0.05 and p < 0.01, respectively). ### Significantly
different from the AR group (p < 0.05 and p < 0.01, respec-
tively).
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Figure 5

The serum IgE level. Each column and vertical bar repre-
sents the mean + S.D. ***: Significantly different from the
control group (p < 0.05 and p < 0.01, respectively). ### Sig-
nificantly different from the AR group (p < 0.05 and p < 0.01,
respectively).

5.00 + 2.19 in sensitized guinea pigs after Hemin admin-
istration (n = 6), and 1.83 + 0.75 in ZnPP treated group (n
= 6). There was an increase in HO-1 immunoreactivity
after allergen challenge (p = 0.01), and an increase further
in HO-1 immunoreactivity after Hemin administration (p
< 0.05). However, there was a decrease in HO-1 immuno-
reactivity after ZnPP treatment (p < 0.05).

Expression of HO-I by real-time RT-PCR

The cumulative data for mRNA expression of HO-1 is pre-
sented in Fig. 11. HO-1 mRNA expression was upregu-
lated in AR group as compared with control (p < 0.05),
and the expression was further increased after being stim-

Figure 6

Immunoreactivity of HO-1 in nasal mucosa. Immuno-
reactivity of HO-I in normal nasal mucosa. No positive stain-
ing was seen for HO- 1. (original magnification x 40).
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Figure 7

Immunoreactivity of HO-I in nasal mucosa. Immuno-
reactivity of HO-I in allergic nasal mucosa: Cytoplasmic
staining (brown) is seen in seromucous glands, mesenchymal
cells and inflammatory cells of the lamina propria. (original
magnification % 40).

ulated with Hemin (p < 0.05), whereas it was inhibited by
ZnPP (p < 0.05). To verify the melting curve results, repre-
sentative samples of the PCR products were run on 1.5%
agarose gels. Electrophoresis result showed that the order
of HO-1 mRNA expression levels from high to low was
Hemin treated group, AR sensitized group, control group
and ZnPP treated group in turn (Fig. 12). Moreover, a sig-
nificant correlation between HO-1 mRNA expression and
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Figure 8

Immunoreactivity of HO-I in nasal mucosa. Positive
staining also can be seen in cytoplasm of vascular endothelial
cells, but no HO-1 expression was found in respiratory epi-
thelium and cartilage. (original magnification x 40).
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Figure 9

Immunoreactivity of HO-1 in nasal mucosa. Immuno-
reactivity of HO-1 in Hemin group nasal mucosa: A particu-
larly intense staining was present in epithelium cells of
seromucous glands. (original magnification x 40).

the concentration of COHb was found (r = 0.803, P =
0.001) (Fig. 13). It suggested that level of CO was regu-
lated by HO-1 in a concentration-dependent manner, and
Hemin and ZnPP might affect the level of CO by regulat-
ing the expression of HO-1 in AR.

Discussion

This study shows that expression of HO-1 and concentra-
tion of COHDb increased in sensitized guinea pigs, which
suggested that raised levels of CO in serum of AR animals

° T WOTgie. §
_ b ¥ 0
2 - e ;

Figure 10

Immunoreactivity of HO-1 in nasal mucosa. Immuno-
reactivity of HO-I in ZnPP group nasal mucosa: Weak
expression of HO-| was observed in lamina of mucosa cells.
(original magnification x 40).
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Figure 11

Expression of HO-1 mRNA. Each column and vertical bar
represents the mean * S.D. *** Significantly different from
the control group (p < 0.05 and p < 0.01, respectively). ###
Significantly different from the AR group (p < 0.05 and p <
0.01, respectively).

were associated with increased expression of HO-1 in
nasal mucosa. Therefore, the endogenous CO may take
part in the pathogenic process of AR and is positively cor-
related with expression of HO-1 in nasal mucosa.

Positive HO-1 expression can be seen in the cytoplasm of
seromucous glands, mesenchymal cells and inflammatory
cells in lamina, but not in the nasal respiratory epithelium
of sensitized guinea pigs, which confirms early observa-
tion of Elhini A [5]. HO-1 up-regulation in seromucous
glands within the submucosal layer suggests that HO-1
may play a role locally at submucosal level rather than
epithelial level. Positive expression also can be seen in
cytoplasm of vascular endothelial cells. In the research of
Pitkin L [11], immunohistochemistry for HO-1 had

Figure 12

Image of gel of RT-PCR for HO-1 (left) and B-actin
(right) mRNA from nasal mucosa of guinea pigs. Sizes
of PCR products are 370 bp(HO-1) and 240 bp(p-actin).
Lanes 14 were products of HO-I of normal, AR, Hemin,
ZnPP groups, and lanes 69 were products of B-actin (house-
keeping gene), and lane 5 was a DNA marker to mark the
size of the PCR product(100 600 bp). There was an increase
in HO-1 mRNA in AR group compared with control, and
HO-I mRNA increased after Hemin treated and decreased
after ZnPP treated, whereas there was no change in f-actin
mRNA.
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Correlation between concentration of COHb and
HO-1 mRNA expression level. Pearson Correlation was
used to analyze the relationship between the level of HO-|
mRNA and concentration of COHb. There was a high signifi-
cant direct relationship between them (r = 0.803, P = 0.001).

revealed distinctly positive staining in vascular endothe-
lial cells and erythrocytes in nasal mucosa of allergic rhin-
itis patient. Up-regulation of local HO-1 production in
allergic nasal submucosa indicates that CO may be
involved in the inflammatory process of allergic rhinitis at
the submucosal level, and perhaps contribute to the
increase of nasal irrigation. Increased expression of HO-1
in submucosal layer of nasal mucosa of Hemin treated
group is likely to be related to the oversupply of substrate.
HO-1 antagonist ZnPP attenuated the expression of HO-1
in nasal mucosa. These results indicated that Hemin and
ZnPP successfully influenced immunoreactivity of HO-1
in nasal mucosa.

This study is the first to show that HO-1 expression in
nasal mucosa was up-regulated by Hemin in vivo in aller-
gic rhinitis, accompanied by increased sneezing frequency
and number of nose rubbing. There was a marked increase
in total cell count (p < 0.01) in lavage fluid especially eosi-
nophil and neutrophil. Hemin increases level of plasma
CO and number of infiltrating cells via HO-1 induction
[12,13]. Cellular levels of free heme are approximately
100 nM or less. Higher amounts can be injurious, and kid-
ney and other organs can be injured by increased amounts
of heme from heme proteins|[14], so low concentration of
Hemin was chosen and only continual used for two
weeks. Research of Andersson JA had shown that low con-
centrations of hemin (10-'! m to 10 m) enhanced the
migratory response of neutrophils, whereas higher con-
centrations (107 m to 10-> m) inhibited migration. In this
study, both plasma CO level and HO-1 expression of
guinea pigs were significantly increased after Hemin
treated, even more eosinophil and neutrophil were
induced accompanied by aggravation of symptoms of AR
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[15]. ZnPP as an analog of heme can play a prominent
role in the catabolism of heme and cause decreased HO
activity and CO formation. Administration of ZnPP to rats
leads to its deposition in a variety of organs (plasma, liver,
spleen, kidney, lung, and brain), causing decreased HO
activity and CO formation[16]. Our findings also showed
that HO-1 inhibitor ZnPP suppressed the expression of
HO-1 of nasal mocusa and level of CO in vivo. In our
study, ZnPP attenuated airway hyperreactivity including
decrease of sneezing frequency, nose rubbing, and inhibi-
tion of inflammatory cell infiltration.

CO can serve as intracellular and intercellular signaling
molecules similar to NO. It is able to bind to iron atom of
the heme moiety associated with soluble guanylate
cyclase (sGC), thereby increasing intracellular cGMP
product. This result leads to protein phosphorylation and
ion channels regulation, and finally to cell relaxation
accompanied by the outflow of K* increase and the influx
of Ca?* reduce[17,18]. It also can activate the protein
kinase G (PKG) and affect the protein kinase A (PKA)
activity and KCa channel, resulting in the inhibition of
Ca?* influx of vascular smooth muscle cells to reduce the
intracellular Ca2+ concentration, and further leads to the
vasodilatation[19].

CO may have pro-inflammatory effects since it is also a
potent vasodilator and may increase plasma exudation
from airway vessels [20]. CO can elicit important physio-
logical responses like bronchial relaxation and vasodila-
tion in asthma [21]. However, the anti-inflammatory
effect of endogenous CO is closely related to the expres-
sion of HO-1, and expression of HO-1 has been described
as a marker of response to oxidative stress. The oxidant
stress associated with HO-1 upregulation in the ovalbu-
min-challenged guinea pigs could contribute to an induc-
tion in the number of neutrophils, eosinophils, and
lymphocytes in the nasal cavity. HO-1 is induced in vari-
ous cells inferior to subepithelial region such as vascular
endothelial cells, gland cells, infiltrating inflammatory
cells in the nasal mucosa. The induction of HO-1 has been
implicated as an antioxidant defense mechanism and has
been associated with inflammation of airway disease
include adult respiratory distress syndrome, oxidant-
induced lung injury, and chronic inflammatory disorders
such as chronic obstructive pulmonary disease and
asthma [22-24].

The inducible HO-1 catalyzes the rate-limiting step of
heme oxidation to biliverdin, carbon monoxide (CO),
and iron. Apart from the physiological role of CO, other
metabolites of HO, such as bilirubin, acts as an antioxi-
dant directly by its peroxyl radical-scavenging properties
as well as by decreasing inflammatory cell recruitment
during airway inflammation[25]; and the other metabolic
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product, such as ferrous ion, also acts as an potent antioxi-
dant for cell protection [26].

There was a significant increase of serum IgE level in AR
group as compared with control. The increase of IgE level
during allergic reactions has long been recognized as an
important step in immediate hypersensitivity reactions to
antigen. High serum IgE levels also can be seen in hemin
and ZnPP treated group, but without significant changes
as compared with ovalbumin-sensitized guinea pigs (p >
0.05). The results indicate that endogenous CO takes part
in the pathogenesis of AR mainly through regulating
c¢GMP production, affecting vascular dilation, glandular
secretion, and cytokines or chemokines migration, rather
than influencing the IgE-mediated immune response
process. However, such a hypothesis has not yet been elu-
cidated and further research is needed.

Conclusion

Findings of this study implicate a direct involvement of
CO in the inflammatory process of allergic rhinitis and
the effect of CO may attribute to the action of HO-1. HO-
1 acts as an important modulator of the inflammatory
response in upper airway in allergic rhinitis. Understand-
ing of these mechanisms is essential for future therapeutic
strategies and the successful treatment of the allergic rhin-
itis.
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