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Abstract
Background: It was hypothesized that a pro-atherogenic, high saturated fat and cholesterol diet
(HCD) would increase the inflammatory response to E. coli endotoxin (LPS) and increase its
concentration in plasma after administration to mice.

Methods: C57Bl/6 mice were fed a HCD or a control diet (CD) for 4 weeks, and then treated
with saline, 0.5, 1 or 2 mg LPS/kg, ip. Liver injury (alanine:2-oxoglutarate aminotransferase and
aspartate aminotransferase, collagen staining), circulating cytokines (tumor necrosis factor-α,
interleukin-6 and interferon-γ), factors that can bind LPS (serum amyloid A, apolipoprotein A1, LPS
binding protein, and CD14), and plasma levels of LPS were measured. The hepatic response was
assessed by measuring vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase
(iNOS) and signal transducer and activator of transcription-1 proteins, and VCAM-1 and iNOS
mRNAs. Hepatic mRNA encoding the LPS receptor, Toll like receptor 4, was also determined.

Results: Two mg LPS/kg killed 100% of mice fed HCD within 5 d, while no mice fed CD died. All
mice treated with 0 to 1 mg LPS/kg survived 24 h. HCD increased plasma alanine:2-oxoglutarate
aminotransferase and aspartate aminotransferase, and the enzymes were increased more by LPS in
HCD than CD mice. Induction of plasma tumor necrosis factor-α, interleukin-6, and interferon-γ
by LPS was greater with HCD than CD. Hepatic VCAM-1 and iNOS protein and mRNA were
induced by LPS more in mice fed HCD than CD. Tyrosine phosphorylation of signal transducer and
activator of transcription-1 caused by LPS was prolonged in HCD compared with CD mice. Despite
the hepatic effects of HCD, diet had no effect on the LPS plasma concentration-time profile. HCD
alone did not affect circulating levels of plasma apolipoprotein A1 or LPS binding protein. However,
plasma concentrations of serum amyloid A and CD14, and hepatic toll-like receptor-4 mRNA were
increased in mice fed HCD.

Conclusion: HCD increased the sensitivity of mice to LPS without affecting its plasma level.
Although increased serum amyloid A and CD14 in the circulation may inhibit LPS actions, their
overexpression, along with hepatic toll-like receptor-4 or other factors, may contribute to the
heightened sensitivity to LPS.
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Background
Sepsis is a complex syndrome that results from the host
response to infection. Systemic effects of Gram-negative
sepsis are mediated in large part by lipopolysaccharide
(LPS), which causes tissue injury and inflammation. Dur-
ing bacterial sepsis, as opposed to focal infection or local
inflammation, a major organ that responds to LPS is the
liver [1,2]. LPS induces hepatic production of acute phase
proteins, such as C-reactive protein, serum amyloid A
(SAA), CD14, and LPS binding protein (LBP), which may
actually function to restrict LPS action [3-6].

LPS causes endothelial activation with up-regulation of
adhesion molecules, and promotes the release cytokines,
including tumor necrosis factor-α (TNFα), interleukin-6
(IL-6) and interferon-γ (IFNγ), which typically increase in
sequence [7-9]. LPS, directly and via cytokines, activates
transcription of pro-inflammatory genes such as inducible
nitric oxide synthase (iNOS), and vascular cell adhesion
molecule-1 (VCAM-1). This results in production of nitric
oxide that may contribute to shock and other events,
while endothelial VCAM-1 mediates sequestration of leu-
kocytes in tissues [10]. The induction of iNOS and VCAM-
1 is driven by the activation of several transcription fac-
tors, including nuclear factor kappa B (NFkB), activating
protein-1 (AP-1) and signal transducer and activator of
transcription-1 (STAT1) [11-14].

Genetic and extrinsic factors affect the response to LPS.
One extrinsic factor is diet. High dietary cholesterol

increased susceptibility to various viral and bacterial
infections [15-19]. Dietary cholesterol increased serum
amyloid A, histocompatibility class II, TNFα and other
inflammatory molecules in response to LPS [20-24], and
high fat diet induced histocompatibility class II [25]. Toll-
like Receptor 4 (TLR4), which mediates many effects of
LPS, was expressed in atherosclerotic lesions [26,27], and
aortas of TLR4 knockout mice had reduced inflammatory
activation in response to a high fat diet [28], suggesting a
role for this endotoxin receptor in these diet-related
effects. Dietary fat and cholesterol could also increase
responses to LPS by increasing its blood levels after expo-
sure. Given the inflammatory effects of atherogenic diets,
and the role of endotoxins in acute and chronic disease
[7,22], we hypothesized that a high saturated fat and cho-
lesterol diet (HCD) would increase effects of LPS and its
plasma concentration after administration to mice.

Methods
Female C57BL/6 mice, 3–4 wk old, were purchased from
Jackson laboratories, Bar Harbor, ME. Mice were ran-
domly fed the HCD or control diet (CD) (Research Diets,
Inc., New Brunswick, NJ, Table 1) for 4 wk, when choles-
terol reached a steady level in HCD mice (data not
shown). Mice were treated with an intraperitoneal (ip)
injection of E. coli LPS, serotype 0111:B4 (Sigma-Aldrich,
Inc., St. Louis, MO) in sterile saline solution after 4 wk
feeding. The protocol was carried out under approval of
the Ohio State University Animal Care and Use Commit-
tee. In the first experiment, 8 mice per group were treated

Table 1: Composition of the purified HCD and CD

HCD (D12336)1 CD (D12337)1

Ingredient g/kg of Diet kJ/g of Diet g/kg of Diet kJ/g of Diet

Casein, 30 Mesh 75 1.26 67 1.12
Soy Protein 130 2.18 116 1.94
DL-Methionine 2 0.03 1.8 0.03
Corn Starch 275 4.60 466 7.81
Maltodextrin 10 150 2.51 134 2.24
Sucrose 30 0.50 27 0.45
Cellulose, BW200 90 0 80 0
Soybean Oil 50 1.88 45 1.68
Cocoa Butter 75 2.3 0 0
Coconut Oil, 76 35 1.32 0 0
Mineral Mix S10001 [60] 35 0 31.2 0
Calcium Carbonate 5.5 0 4.9 0
Sodium Chloride 8 0 7.1 0
Potassium Citrate 10 0 8.9 0
Vitamin Mix V10001 [60] 10 0.17 8.9 0.15
Choline Bitartrate 2 0 1.8 0
Cholesterol, USP 12.5 0 0.27 0
Sodium Cholic Acid 5 0 0 0
FD&C Red Dye #40 0.10 0 0 0
FD&C Blue Dye #40 0 0 0.09 0
Total 1000 16.8 1000 15.4

1Product Number from Research Diets, Inc. is indicated in parentheses.
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with 0 or 2 mg LPS/kg, ip. With the unexpected lethality
in HCD mice (figure 1), independent groups fed CD or
HCD were subsequently treated with of 0, 0.5, or 1.0 LPS
mg/kg. For plasma LPS determinations, pilot experiments
indicated that serial sampling of blood from mice pro-
duced samples variably contaminated with LPS. There-
fore, a single sample of blood was taken from the right
ventricle of 5 individual mice in each group. Plasma was
recovered and stored at -80°C and livers were removed
and frozen in liquid nitrogen.

Plasma cholesterol was measured with Infinity Choles-
terol Reagents (Sigma-Aldrich, Inc., St. Louis, MO).
Plasma alanine:2-oxoglutarate aminotransferase (ALT),
aspartate aminotransferase (AST) were measured with a
kinetic assay [29], using reagents from Thermo Trace, Lou-
isville, CO. Limulus amoebocyte lysate chromogenic end-
point assay (Hycult Biotechnology b. v., Norwood, MA)
was used for LPS detection [30]. Absorbance was read at
405 nm. To exclude the possibility that lipid levels would
affect the sensitivity of the assay, various standard curves
with reconstituted LPS diluted in plasma collected from
untreated CD or HCD mice. There was no statistical differ-
ence between these curves (data not shown).

Plasma samples were diluted with endotoxin-free water
and tested with ELISA kits for TNFα, IL-6, and IFNγ (BD
Bioscience, Pharmagen) and SAA (BioSource Interna-
tional, Camarillo, CA). Wells of plates were coated with

primary antibody standards or samples were incubated in
the wells, treated with avidin-horseradish peroxidase. 3,
3', 5, 5'-Tetramethyl benzidine was added to develop
color. Absorbance was read at 450 nm after stopping with
1 mol/L H3PO4.

Five ul plasma were also mixed with denaturing sample
buffer [11], heated 10 min at 95 degrees, and subjected to
SDS-PAGE and western blotting with anti-mouse apolipo-
protein A1 (Abcam, Inc., Cambridge, MA), anti-mouse
CD14 (BD Pharmingen, San Diego, CA) or anti-mouse
LBP (Cell Sciences, Inc., Canton, MA). Ten mg of liver tis-
sue were lysed in 100 µL RIPA buffer (1% TritonX-100, 50
mM Tris, pH 7.5, 150 mmol/L NaCl, 5 mmol/L EDTA, 0.5
mmol/L Na3VO4, 50 mmol/L NaF, 10 mg aprotinin/L, 10
mg leupeptin/L, 10 mg pepstatin A/L, and 1 mmol/L
PMSF) and sonicated. Protein concentrations were deter-
mined [31], and 10 µg liver protein was subjected to west-
ern blotting [11]. Antibodies used were rabbit anti-
inducible nitric oxide synthase (iNOS) (Transduction
Laboratories, Lexington, KY), goat anti-mouse vascular
cell adhesion molecule-1 (VCAM-1) (Santa Cruz Biotech-
nology, Inc. Santa Cruz, CA), rabbit anti-signal transducer
and activator of transcription 1, total (STAT1), and anti-
phospho-STAT1 (Y701) (Cell Signaling Technology, Inc.
Beverly, MA). Horseradish peroxidase-conjugated goat
anti-mouse, goat anti-rat, goat anti-rabbit, rabbit anti-goat
secondary antibodies (Jackson ImmunoResearch Labora-
tories, Inc. West Grove, PA) were used to detect labeled
proteins with enhanced chemiluminescence and X-ray
film exposure. Films were digitally scanned and integrated
signal intensity of bands was calculated by image analysis
(NIH Image J).

Approximately 50 mg of liver was homogenized in 1 mL
of Trizol reagent, and total cellular RNA was extracted,
reverse transcribed into cDNA and subjected to polymer-
ase chain reaction as described previously (primers, rea-
gents and enzymes were from Invitrogen Corporation,
Grand Island, NY) [11]. The primers used in this study
were: iNOS [GenBank: NM_010927], sense: 5'-CCT GGA
CAA GCT GCA TAT GA-3'; antisense: 5'-GCT GTG TGG
TGG TCC ATG AT-3'; VCAM-1 [GenBank: NM_011693],
sense: 5'-GCG CTG TGA CCT GTC TGC AA-3' and anti-
sense: 5'-GGT GTA CGG CCA TCC ACA G-3'; TLR4 [Gen-
Bank: AF185285], sense: 5'-GCT TAC ACC ACC TCT CAA
ACT TGA T-3', antisense: 5'-ATT ACC TCT TAG AGT CAG
TTC ATG G-3'; β-actin [GenBank: X03672], sense: 5'-ATG
GAT GAC GAT ATC GCT-3', antisense: 5'-ATG AGG TAG
TCT GCT AGG T-3'. The polymerase chain reaction condi-
tions included an initial denaturation at 94°C for 5 min,
followed by a cycle of denaturation (94°C/1 min),
annealing (1 min at 60°C for iNOS and β-actin, or at
55°C for VCAM-1 and TLR4), and extension (72°C/1
min). Each sample was subjected to 35 cycles followed by

The effect of LPS on survival of miceFigure 1
The effect of LPS on survival of mice. C57Bl/6 mice (8 per 
group), were fed HCD or CD for 4 wk, and then treated 
with a single dose of LPS (2 mg/kg, ip). The median survival 
time for mice fed HCD was 2 d and the curves differed signif-
icantly (p < 0.0001).
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a final extension (72°C for 10 min). Equal amounts of
RNA, determined by absorbance at 260 nm, were reverse
transcribed. Polymerase chain reaction products were sep-
arated and visualized on a 1.0% agarose ethidium bro-
mide stained gel. Band intensity was assessed from digital
images with analysis software (UVP-Labworks Analysis),
normalized to β-actin expression in each sample. The den-
sitometric ratio of target mRNA signal to β-actin signal
was calculated.

Hepatic fibrosis was evaluated in formalin-fixed, paraffin-
embedded tissues using Masson's trichrome stain (Sigma-
Aldrich, Inc., St. Louis, MO) [32]. Images were captured
using a 20× objective on a standard upright microscope
(Olympus, Melville, NY) and a digital camera (Diagnostic
Instruments, Sterling Heights, MI). Five images were cap-
tured per section from 5 mice fed CD or HCD. Blue colla-
gen staining was defined, and the extent of fibrosis, as a
percentage of total tissue area in each image, was calcu-
lated using Image Pro Plus image analysis software
(Media Cybernetics, Silver Springs, MD).

Survival was analyzed by the Mantel-Haenszel test. Other
data were analyzed by Student's t-test or by ANOVA with
Bonferroni adjustment for multiple comparisons of inde-
pendent groups [33]. A p-value less than 0.05 was consid-
ered significant.

Results
Plasma cholesterol was increased by 4 wk feeding HCD in
comparison with CD (means ± SE were 3.3 ± 0.02 in CD
mice and 5.3 ± 0.02 mmol/L in HCD mice, p < 0.0001).
Body weights did not differ between mice fed the CD
(23.37 ± 0.04 g) and HCD (23.42 ± 0.04 g). Food intake
over 4 wk did not differ between the groups (1.9 ± 0.19 vs.
1.8 ± 0.17 g/mouse/d for CD and HCD), and energy
intake was not different (30.5 ± 2.8 and 31.9 ± 2.9 kJ/
mouse/d in mice fed CD and HCD respectively). These
results are similar to those of others using similar diets
with C57Bl/6 mice [34]. Liver weights were significantly
increased in HCD as compared with CD mice: liver to
body weight ratio was 4.15 ± 0.005% in mice fed the CD
and 6.37 ± 0.012% in mice fed the HCD (p < 0.0001).

C57BL/6 mice fed HCD were extremely sensitive to LPS:
after a single ip dose of 2 mg/kg none of the mice survived
for 5 d, compared with a 100% survival in the CD group
(Figure 1). The median survival time for mice fed HCD
was 2 d and the curves differed significantly (p < 0.0001).
Therefore, lower doses of LPS (0.5 to 1 mg/kg) were used
for subsequent experiments. Plasma ALT and AST activi-
ties were elevated in saline-treated mice fed the HCD in
comparison with CD, and were further elevated only in
HCD mice 12 h after LPS treatment (figure 2). The extent
of fibrosis, indicated by the relative area of collagen stain-

ing in liver sections, was not affected by diet (relative areas
were 0.057 ± 0.017 in CD and 0.076 ± 0.054 in HCD sec-
tions).

The effect of HCD on plasma cytokines that mediate some
effects of LPS was determined. Plasma TNFα was elevated
only in CD mice treated with 1 mg LPS/kg at 2 h, while
increases were significantly greater in LPS-treated HCD
mice (Figure 3A). IL-6 and IFNγ were also significantly
increased by LPS, and the increases were greater in HCD
mice compared with CD (Figure 3B and 3C). In particular,
IL-6 remained elevated for at least 12 h in HCD mice and
the typically delayed increase in IFNγ was observed 12 h
after LPS only in HCD mice.

Hepatic VCAM-1 mRNA was induced 0.5 h after LPS injec-
tion with respect to the saline-treated mice in both diet
groups, but was increased more in the HCD mice (Figure

The effect of diet on plasma ALT and ASTFigure 2
The effect of diet on plasma ALT and AST. CD or HCD mice 
received a single ip injection of 0, 0.5, or 1.0 mg LPS/kg and 
blood was sampled after 12 h. Values are mean + SE of 5 
mice per group. *: p < 0.05 for comparison with 0 mg LPS/kg. 
+:p < 0.05 for comparison with CD mice treated with the 
same dose of LPS.
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4A). Induction reached a peak at 2–4 h and declined over
24 h. While VCAM-1 protein was not increased by LPS in
CD mice, it was significantly elevated in HCD mice 4 h
after administration of 0.5 or 1 mg LPS/kg, and remained
elevated 12 h after 1 mg LPS/kg (Figure 4B). The iNOS

mRNA signal was increased by LPS in HCD mice with a
peak at 2 h (Figure 5A). iNOS protein was increased in

The effect of diet and LPS on hepatic VCAM-1 expressionFigure 4
The effect of diet and LPS on hepatic VCAM-1 expression. 
mRNA levels (A) were measured with RT-PCR. Densitomet-
ric intensity of images of ethidium bromide-stained agarose 
gels were normalized to β-actin RT-PCR signal. Induction of 
VCAM-1 RT-PCR signal ratios (n = 5 in each group) are 
expressed as fold increase compared to vehicle-treated CD 
mice, represented by 1 on the y-axis. Values are expressed 
mean ± SE of 5 mice are the fold increases in VCAM-1/β-
actin mRNA signal ratio relative CD mice treated with 0 mg 
LPS/ml (represented by 1 on the y-axis). The level of VCAM-
1 protein (B) was measured by western blotting 4 and 12 h 
after treatment (representative images and image analysis). 
Values are the mean + SE of total integrated signal intensity 
obtained from densitometry for 5 mice in each group. *: p < 
0.05 for comparison with 0 mg LPS/kg. +: p < 0.05 for com-
parison with CD treated with the same dose of LPS.

The effect of diet and LPS on plasma levels of pro-inflamma-tory TNFα (A), IL-6 (B), and IFNγ (C)Figure 3
The effect of diet and LPS on plasma levels of pro-inflamma-
tory TNFα (A), IL-6 (B), and IFNγ (C). Plasma levels were 
measured 0.5, 2, 4, 12, or 24 h after treatment. Values are 
the mean ± SE of 5 mice per group. *: p < 0.05 for compari-
son with 0 mg LPS/kg. +: p < 0.05 for comparison with CD 
treated with the same dose of LPS.
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HCD mice 12 h after 0.5 and 1 mg LPS/kg, and not in CD
mice (Figure 5B).

IL-6 and IFNγ cause inflammatory gene expression in part
by activating STAT1 [11,35]. Total levels of STAT1α were
increased in HCD and CD mice 12 h after treatment with
LPS in comparison with saline (Figure 6A, B). The acti-
vated form of STAT1α, phosphorylated at tyrosine 701
(pY701), was increased 4 h after treatment with LPS, in

comparison with saline, in both CD and HCD mice. How-
ever, elevated phosphorylation was maintained for 12 h
in LPS-treated HCD mice, while it had decreased in the
CD group (Figure 6A, C).

Given the heightened response to LPS, the effect of diet on
its plasma levels was determined. LPS was not detectable
in blood of saline-treated CD or HCD mice. LPS increased
rapidly in plasma after ip injection in both CD and HCD
mice (Figure 7). The highest LPS levels occurred at 2 h,
and then decreased. There was no difference between mice
fed the two diets, except with 1 mg LPS/kg at 24 h, where
the level was elevated in CD mice. In another group of
mice treated with 1 mg LPS/kg, plasma LPS was undetect-

The effect of diet and LPS on STAT1 activation in liverFigure 6
The effect of diet and LPS on STAT1 activation in liver. Total 
and tyrosine 701 phosphorylated (pY701) STAT1 protein 
levels in hepatic tissues from CD and HCD mice were meas-
ured by western blotting. A representative image from sam-
ples 12 h after LPS treatment is shown in panel A. STAT1α 
and the shorter β form are visible. Densitometric intensity of 
total and pY701 STAT1α was measured and means + SE of 5 
mice fed each diet 4 and 12 h after treatment were calculated 
(B and C). *: p < 0.05 for comparison with 0 mg LPS/kg.

The effect of diet and LPS on hepatic iNOS expressionFigure 5
The effect of diet and LPS on hepatic iNOS expression. iNOS 
mRNA (A) was assessed as in figure 4. Values are expressed 
mean ± SE of 5 mice are the fold increases in iNOS/β-actin 
mRNA signal ratio relative CD mice treated with 0 mg LPS/
ml, represented by 1 on the y-axis. The level of iNOS protein 
(B) was measured by western blotting 4 and 12 h after treat-
ment (representative images and image analysis). Values are 
the mean + SE of total integrated signal intensity obtained 
from densitometry for 5 mice in each group. *: p < 0.05 for 
comparison with 0 mg LPS/kg. +: p < 0.05 for comparison 
with CD treated with the same dose of LPS.
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able 7 d after treatment (data not shown). The half-life for
LPS was approximately 12 h, which is similar to results
reported in C3H/St and C3H/HeJ mice [36].

The effect of diet on proteins known to bind LPS was
investigated. Plasma SAA was increased 84-fold in HCD
compared with CD mice (mean ± SE was 1.5 ± 0.9 µg/ml
in mice fed the CD, and 126.7 ± 23.9 µg/ml in mice fed
HCD, p < 0.0001). Twelve h after treatment with 0.5 mg
LPS/kg, SAA was 3912 ± 821 µg/ml in CD and 5424 ± 628
µg/ml in HCD mice. Plasma CD14 w as increased 4.1-fold
in HCD compared with CD mice (figure 8A). Plasma LBP
and ApoA1, however, were unaffected by diet (Figure 8B,
C). Finally, reverse transcription-polymerase chain reac-
tion (RT-PCR) products of TLR4 mRNA were increased in
livers of mice fed HCD in comparison with CD mice (Fig-
ure 9). Although it would be desirable to assess hepatic
TLR4 in mouse liver, several commercially available anti-
bodies identified multiple bands of varying size on west-
ern blots of murine samples (not shown).

Discussion
Feeding HCD for 4 wk raised cholesterol levels and
increased the lethal and inflammatory effects of LPS.
While there was no evidence of hepatic fibrosis, mild
increases in plasma ALT and AST suggested that HCD
alone affected the liver. The effect of LPS on these enzymes
was also increased in HCD mice. The livers of HCD mice
reacted normally to LPS in 2 respects. As detailed later,
removal of LPS from plasma was not affected by diet, and,
while the plasma SAA was increased by HCD alone, the
level to which it was induced by LPS was similar to the

The effect of diet on plasma CD14, ApoA1 and LBPFigure 8
The effect of diet on plasma CD14, ApoA1 and LBP. CD14 
(A), LBP (B), and ApoA1 (C) were measured by densitome-
try after western blotting of plasma samples from mice fed 
CD or HCD for 4 weeks. Representative blots are shown. 
Bars depict the mean + SE for 5 mice in each group. *: p < 
0.05 for comparison with CD mice.

The effect of diet on plasma pharmacokinetics of LPSFigure 7
The effect of diet on plasma pharmacokinetics of LPS. CD or 
HCD mice received a single ip injection of 0, 0.5, or 1.0 mg 
LPS/kg. Values are mean ± SE of 5 mice per group. *: p < 0.05 
for comparison with 0 mg LPS/kg for each diet.
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induction in CD mice. Further clarification of the role of
the liver alteration in sensitivity to LPS is necessary.

Cytokines induced by LPS may mediate its deleterious
effects [9]. IFNγ for example causes LPS hypersensitivity
[37] and promotes atherosclerosis [38]. Although HCD
alone did not elevate plasma TNFα, IL-6 or IFNγ, the
higher sensitivity of HCD mice to LPS was paralleled by
greater increases in these cytokines in response to LPS in
comparison with CD mice (figure 3). The observed pat-
tern of a transient spike in TNFα with increased IL-6,
which is known to repress TNFα [39], followed by pro-
duction of IFNγ, likely from secondarily activated T and B
lymphocytes, is a typical response to LPS [9]. Thus, HCD
apparently potentiated the cytokine-inducing effects of
LPS without qualitatively altering their sequence of

appearance. Others found that hypercholesterolemia
increased the induction of plasma TNFα, or of aortic inter-
leukin-1 and TNFα mRNA by gram negative endotoxins
[22,24]. Interestingly, a high fat diet in rats, or familial
hypercholesterolemia in humans, did not increase TNFα
production by isolated monocytes or whole blood treated
with LPS in vitro [40,41]. This suggests that cells in these
preparations were not made hyper-responsive to LPS by
these conditions. TNFα is constitutively synthesized by
Kupffer cells in liver, which rapidly release it after chal-
lenge with LPS. While IL-6 is not constitutively expressed,
it is rapidly transcribed by these liver macrophages [9].
HCD may increase the sensitivity and/or numbers of cir-
culating leukocytes, and hepatic Kupffer or other cells that
could contribute to cytokine production [42,43]. Non-
hepatic tissues may also be sensitized in vivo [24]. Never-
theless, significant increases in hepatic TLR4 mRNA in
untreated HCD mice compared with CD mice support the
idea that the liver is made hyper-responsive to LPS by
HCD (figure 9).

VCAM-1 and iNOS were measured since they are part of
an inflammatory cascade induced by LPS. VCAM-1 medi-
ates localization of various inflammatory cells in tissues.
iNOS, on the other hand, can produce large amounts of
nitric oxide, a potent vasodilator that may contribute to
shock [10]. HCD increased the effect of LPS on hepatic
VCAM-1 and iNOS mRNA and protein (Figures 4 and 5),
further confirming the pro-inflammatory nature of HCD.

The murine VCAM-1 and iNOS promoters are activated by
AP-1, NFkB, and by STAT1 and its secondary target, inter-
feron regulatory factor-1 [12-14,44]. TNFα is a strong acti-
vator of AP-1 and NFkB, and IL-6 and IFNγ each cause
phosphorylation of STAT1 on tyrosine 701, dimerization,
and translocation to the nucleus [11,35,45]. Thus, early
induction of VCAM-1 and iNOS mRNA by LPS may result
from actions of LPS or the induced TNFα and IL-6 on
these transcription factors. The prolonged increase in IL-6
and enhancement of later increases in IFNγ by LPS in
HCD mice correlates with the extended duration of STAT1
activation (figure 6). While STAT1 may contribute to acute
increases in hepatic iNOS and VCAM-1 mRNA, it cannot
be the only factor, since it was similarly activated in both
CD and HCD mice 4 h after LPS treatment. However, the
extended duration of STAT1 activation in HCD mice may
stimulate the delayed expression of other factors. As seen
in cardiac myocytes [44], iNOS protein increased well
after mRNA levels peaked and returned to baseline (figure
5), suggesting that translation may be increased, or that
protein degradation may be reduced in HCD mice at later
times after LPS treatment. The role of LPS, TNFα, IL-6,
IFNγ, or STAT1 in particular, in the translation or turnover
of iNOS and VCAM-1 after HCD remains to be investi-
gated. In any case, inflammatory enhancement by HCD

The effect of diet and LPS on hepatic TLR4 mRNAFigure 9
The effect of diet and LPS on hepatic TLR4 mRNA. Repre-
sentative images of ethidium-stained agarose electrophoresis 
gels of RT-PCR products of RNA extracted from livers of 
mice fed CD or HCD for 4 weeks (A). MW is a Lambda Hin-
dIII molecular weight marker. Signal intensities were meas-
ured as in figure 4A and normalized to the RT-PCR signal for 
β-actin in each sample (B). Bars depict mean normalized sig-
nal ratios + SE for 5 mice fed each diet, relative to the CD 
group, represented by 1 on the y-axis. *: p < 0.05 for com-
parison with CD.
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may contribute to a detrimental interaction between diet
and LPS in vivo.

HCD could increase plasma levels of LPS or its activity.
Regardless of diet, however, LPS appeared in the systemic
circulation within 30 min and reached similar peaks 2–4
h after ip injection (Figure 7). The entire pharmacokinetic
profile of LPS was similar in CD and HCD mice, indicat-
ing that the hypersensitivity of HCD mice was not due to
increased absorption or reduced excretion. If the mild
increase in ALT and AST indicates hepatic damage in HCD
mice, it was apparently of no consequence for plasma
pharmacokinetics of LPS, even though it is excreted in bile
[46].

Circulating LPS is carried by LPS-binding proteins and
lipoproteins, particularly HDL [3,47-50]. Binding of LPS
to lipoproteins inactivates LPS in vitro and in vivo, and
reconstituted HDL is anti-inflammatory in animal and
human endotoxemia [50-55]. Apolipoproteins them-
selves appear to be anti-inflammatory and can bind LPS
[3,56]. The main apolipoprotein of normal HDL is
ApoA1, but SAA and the LPS-interacting proteins, LBP and
CD14, associate with HDL when they are induced [3,57].
In the present investigation, plasma levels of LBP and
ApoA1 were not affected by HCD (Figure 8B and 8C).
However, HCD increased plasma SAA as seen by others
[20], and plasma CD14 was induced (Figure 8A).

Although the consequences of the increases in SAA and
CD14 by HCD for a balance between pro- and anti-
inflammatory actions of HDL are not known, a number of
recent studies suggest that the effects of LPS should be
reduced. SAA-HDL and normal HDL equally inhibited the
induction of VCAM-1 by TNFα in endothelial cells [58].
However, SAA may also act indirectly to inhibit responses
to LPS in vivo. For example, LBP, at concentrations nor-
mally found in plasma, antagonized the induction of
TNFα by LPS in THP-1 cells in vitro. HDL purified from
normal serum prevented this antagonism by LBP more
effectively than HDL from critically ill subjects [59]. Since
SAA, and probably SAA-HDL, was elevated in these
patients, normal HDL may be a more effective antagonist
of the anti-inflammatory effects of LBP than SAA-HDL.
Thus, a net suppression of LPS activity might be expected
when SAA is increased as it was in HCD mice. Although
some CD14 is necessary for full activity of LPS at TLR4
receptors, elevated CD14 also antagonizes LPS [6]. If the
net effect of elevated plasma SAA and CD14 is to inhibit
LPS action, then the observed hypersensitivity of HCD
mice may be due to a heightened response of target tis-
sues. Increased hepatic TLR4 mRNA may again be signifi-
cant in this respect. Further investigation is necessary to
determine whether HCD alters the association of LPS with
plasma lipoproteins, and whether changes in SAA, CD14

or other circulating factors affect the activity of LPS or its
concentration in tissues.

Conclusion
C57BL/6 mice developed hypercholesterolemia on a 4 wk
HCD, accompanied by an inflammatory state with
increased SAA and CD14. HCD caused an exaggerated
response to LPS without affecting its plasma pharmacoki-
netics. Effects of HCD on liver, indicated by circulating
liver enzymes and TLR4 mRNA, may contribute to the
increased sensitivity to LPS. The results demonstrate that
dietary cholesterol/fat can significantly affect the severity
of the response to endotoxin.
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