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Abstract 

Neuropathic pain (NP) is a widespread chronic pain with a prevalence of 6.9–10% in the general population, severely 
affecting patients’ physical and mental health. Accumulating evidence indicated that the immune environment is an 
essential factor causing NP. However, the mechanism is unclear. This study attempted to analyze NP-related immune 
infiltration patterns. We downloaded the expression profiles from the Gene Expression Omnibus (GEO) database. The 
novel method of single-sample gene set enrichment analysis (ssGSEA) algorithm and weighted gene co-expression 
network analysis (WGCNA) was applied to identify immune-related genes and verified in vitro and in vivo experi-
ments. The spared nerve injury (SNI) group was closely related to type1 T helper cells (Th1 cells), and two key genes 
(Abca1 and Fyb) positively correlated with Th1 cell infiltration. At the single-cell level, Abca1 and Fyb were significantly 
expressed in macrophages. In addition, we verified that Abca1 could affect the function of macrophages. Finally, we 
hypothesized that Abca1 is involved in the infiltration of Th1 cells into dorsal root ganglion (DRG) tissues and induces 
NP via immunoinflammatory response. Hence, the present study aimed to elucidate the correlation between NP and 
neuroinflammation and identify a new therapeutic target for treating NP.
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Introduction
Neuropathic pain (NP) was redefined as pain caused by 
a lesion or disease of the somatosensory nervous system 
by The International Association for the Study of Pain 
(IASP) in 2011 [1]. The main signs and symptoms include 
spontaneous pain, allodynia, and hyperalgesia [2]. The 
prevalence of NP is about 6.9–10% worldwide [3], but 
the diverse etiology, complex pathogenesis, and variable 
clinical presentation have no effect on the clinical treat-
ment for NP. Thus, understanding the pathogenesis of NP 

is an urgent requirement to explore the therapeutic tar-
gets and develop the targeted drugs [4].

Previous studies on NP have focused on the neuronal 
changes and the role of peripheral and central sensitiza-
tion after nerve injury. Accumulating evidence suggested 
that immune cells and related cytokines are closely asso-
ciated to NP [5–7]. After peripheral nerve injury, the acti-
vation and migration of immune cells and the release of 
immunologically active substances stimulate the immune 
response or inflammatory damage of the nervous system, 
affect the excitability of neurons and the synaptic con-
nection between neurons, and promote the occurrence 
and development of NP [5, 8].

Some studies illustrated that the interaction between 
neurons and non-neurons in the spinal dorsal horn 
is a vital factor that induces and maintains NP after 
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peripheral nerve injury [8, 9]. Furthermore, Costigan 
et  al. [10] demonstrated that T cells infiltration and 
activation in the spinal dorsal horn after peripheral 
nerve injury contributed to neuropathic hypersensitiv-
ity, especially high-level Th1 cells in adults. However, 
the contribution of non-neuronal cells in the DRG 
has been studied only slightly. Recently, Liu et al. [11]. 
demonstrated that macrophages in mice DRG induce 
and maintain NP. The study also confirmed the inter-
action between sensory neurons and macrophages, 
revealing the potential peripheral DRG targets for NP 
therapy. Therefore, exploring the infiltration pattern 
of immune cells in the DRG provides a new vision for 
studying the NP caused by peripheral nerve injury.

Various tools have been developed to search for 
immune-related biomarkers since the rapid develop-
ment of bioinformatics [12] but have been rarely used 
in NP research. In this study, we first applied the single 
sample gene set enrichment analysis (ssGSEA) algo-
rithm to evaluate the difference in immune cell con-
tent in DRG tissues and found higher levels of Th1 
cells infiltration in the spinal nerve injury (SNI) group 
compared to the control (Con) group. Subsequently, 
the module genes associated with Th1 cells infiltra-
tion were identified using weighted gene co-expression 
network analysis (WGCNA) [13], the module genes 
most associated with Th1 cells infiltration were iden-
tified. Next, the expression characteristics of crucial 
genes were analyzed at the single-cell level. Finally, 
the immune-related key genes were validated, and the 
potential mechanism of Abca1 was explored in the 
occurrence and development of NP to provide criti-
cal guidance in developing effective immunotherapy 
strategies.

Results
Selecting and preprocessing data
The flowchart of analysis steps is shown in Fig. 1. All 
data were downloaded from the GEO database and 
sorted in Table  1. First, we merged GSE102721 and 
GSE149770 datasets to obtain 9 Con and 10 SNI sam-
ples. Then, the batch effect between the data was elim-
inated. The clustering distribution was uniform after 
the normalization of the dataset, indicating data reli-
ability (Fig. 2A and B).

Screening for DEGs and enrichment analysis
A total of 163 DEGs (114 upregulated and 49 downregu-
lated) were identified between the Con and SNI groups 
from the merged gene expression matrix, as shown in the 
volcano map and heat map (Figs.  2C and D). Figures  2E 
and F illustrated the results of the functional correlation 
analysis of GO and KEGG. The results of GO analysis 
suggested that DEGs are involved in three cellular func-
tions: biological processes (BP), cell components (CC), and 
molecular function (MF) (Fig. 2E). The main changes in BP 
were the metabolism and activation of amino acids, such as 
icosanoid metabolic process, response to glucocorticoid, 
and response to corticosteroid. The primary variations 
in CC involved synaptic membrane, receptor complex, 
and postsynaptic membrane. The significant changes in 
MF included G protein-coupled peptide receptor activity, 
monooxygenase activity, peptide receptor activity, and fatty 
acid binding. KEGG pathway analysis results (Fig. 2F) indi-
cated that DEGs are significantly enriched in neuroactive 
ligand-receptor interaction and calcium, PI3K-Akt, MAPK, 
and TGF-beta signaling pathways.

Screening of significantly different immune cells
The ssGSEA algorithm was used to analyze the specific 
immune cell types infiltrated into DRG tissues and elu-
cidate their immune microenvironment. The boxplot 
showed differences in immune cell infiltration in DRG tis-
sues (Fig. 3A). Compared to the Con group, the infiltration 
level of type 1 T helper (Th1) cells (P < 0.05), CD56bright 
natural killer (NK) cells (P < 0.05), and neutrophils (P < 0.01) 
were higher in the SNI group. Therefore, we defined these 
three types of significantly different immune cells as the 
trait data analyzed by WGCNA. In addition, Fig. 3B shows 
the correlation between 28 immune cells. Correlation heat 
maps showed that Th1 cells were positively correlated with 
gamma delta T cells and regulatory T cells. CD56bright NK 
cells were positively associated with central memory CD8 
T cells, gamma delta T cells, and Tfh cells. A negative cor-
relation was established between the activated B cells and 
effector memory CD8 T cells.

Identifying immune‑cell infiltration‑related genes
During WGCNA analysis, we chose β = 4 (scale-free 
 R2 = 0.85) to construct a scale-free network (Fig.  3C). 
The modules with similarities > 0.75 were merged, and 
12 modules were retrieved (Fig. 3D). Figure 3E illustrates 

Fig. 1 Flow chart of the analysis step in this study. The datasets were downloaded from the GEO database and the differentially expressed genes 
(DEGs) that were significantly correlated with NP were screened. Enrichment analysis was performed to describe the function of DEGs. ssGSEA 
algorithm was used to identify significantly different immune cells. WGCNA package was applied to screen Hub genes related to immune cells. 
Then, Hub genes were verified through external datasets, and spearman was used to analyze the correlation between Hub genes and immune 
cells. Next, the expression patterns of these Hub genes were detected at the single-cell level. Finally, the expression level of the Hub gene and its 
related functions will be verified by in vitro and in vivo experiments

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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the correlation between each module and immune traits. 
We found that Th1 cells were highly correlated with blue 
modules (Cor = 0.942, P = 1.57E-06). CD56bright NK cells 
were highly correlated with turquoise module (Cor = 0.917, 
P = 1.05E-05). Neutrophils were highly correlated with the 
turquoise module (Cor = 0.693, P = 0.008). Numerous stud-
ies have shown that the immune response mediated by Th1 
cells is closely related to NP. To clarify the potential role and 
mechanism of Th1 cells in NP, we selected the blue mod-
ule with the highest correlation with Th1 cells as the core 
module for subsequent analysis. According to the screen-
ing criteria, GS > 0.5 and MM > 0.8, 305 genes were identi-
fied in the blue module (Fig. 3F). Next, we constructed a 
Venn plot to show the intersection genes of the core mod-
ule and DEGs (Fig. 3G). These intersection genes, including 
Abca1, Bach1, Cckbr, Col5a3, and Fyb, were selected as the 
key candidates.

Identifying and verifying key genes
The expression of the candidate key genes was veri-
fied using an external dataset (GSE24982). Figures  4A 
and B show that Abca1 and Fyb were significantly 
upregulated in the SNI group of the GSE24982 data-
set, and the receiver operating characteristic (ROC) 
curves were drawn to evaluate the verification reliability  
(Figs. 4C and D). However, it was found that Bach1 did 
not exist in the GSE24982 dataset, while Cckbr and 
Col5a3 did not differ significantly between the experi-
mental and the control group. Therefore, follow-up stud-
ies mainly focused on Abca1 and Fyb. Eventually, Abca1 
[area under the curve (AUC) = 0.885, 95% confidence 

interval (CI): 0.768–0.975] and Fyb (AUC = 0.998, 95% 
CI: 0.985–1.000) were identified as the key genes for Th1 
cell infiltration in DRG. Subsequently, Spearman’s cor-
relation analysis was performed to verify the correlation 
between Abca1, Fyb and immune cell infiltration. The 
results showed a correlation between Abca1 and Th1 T 
cells, regulatory T cells, CD56bright NK cells, type 17 
Th cells, gamma delta T cells, immature B cells, neu-
trophils, and activated dendritic cells was statistically 
significant (Fig.  4E). Notably, Abca1 was significantly 
correlated with Th1 cells (R = 0.81, P = 1E-05) (Fig. 4F). 
Moreover, the correlation between Fyb and Th1 cells, 
regulatory T cells, gamma delta T cells, myeloid-derived 
suppressor cells (MDSCs), type 17 Th cells, neutrophils, 
activated dendritic cells, and CD56bright NK cells was 
statistically significant (Fig. 4G). Especially, Fyb was sig-
nificantly correlated with Th1 cells (R = 0.8, P = 1.7E-05) 
(Fig. 4H).

scRNA‑Seq data revealed high cellular heterogeneity 
in DRG tissues
We downloaded mouse scRNA sequencing data from 
Sham and SNI models to determine the single-cell 
level pattern in DRG tissues. First, we performed qual-
ity control on the gene expression matrix (Fig.  5A). 
Then, the RNA-seq data were normalized, and 15 
PCs (P < 0.05) were screened for subsequent analysis 
(Fig.  5B). Then t-distributed random neighborhood 
embedding (t-SNE) was used for unsupervised cell 
clustering analysis (Fig. 5C). Figure 5D shows that DRG 
tissue is isolated into nine distinct clusters, including 

Table 1 The enrolled datasets in the current study

GSE102721 and GSE149770 was used for subsequent analysis, GSE24982 and GSE134003 datasets were used for validation at the whole transcriptome and single cell 
levels

Datasets Experiment type Platform Con/Treat

GSE102721 Expression profiling by high throughput sequencing GPL21103 Illumina 3/9

GSE149770 Expression profiling by high throughput sequencing GPL17021 Illumina 6/3

GSE24982 Expression profiling by array GPL1355 Affymetrix 20/20

GSE174430 Expression profiling by high throughput sequencing GPL28457 Illumina 1/2

(See figure on next page.)
Fig. 2 The differentially expressed genes (DEGs) in Dorsal root ganglion (DRG) tissues and enriched analysis. A UMAP diagram, the sample 
distribution of each dataset before the batch effect is removed, and each point represents a sample; (B) the sample distribution of each dataset 
after removing the batch effect; (C) Heat map of DEGs, the color represents expression level, the higher expression level, the darker the color 
(red for up-regulation and blue for down-regulation). The tree cluster on the left represents significant clustering results in different samples; (D) 
Volcano map of DEGs, red represents significantly up-regulated genes, blue represents significantly down-regulated genes, and gray represents 
genes with no significant differences. E Gene Ontology (GO) enrichment analysis bubble diagram, the ordinate is the name of GO and the abscissa 
is the proportion of genes. The circle size represents the count of DEGs enriched in the GO (the larger the circle, the more DEGs are enriched), 
and the color represents enrichment significance (the redder the color is, the more significant the DEGs are enriched on this GO). GO analysis 
includes biological processes (BP), cellular components (CC) and molecular functions (MF); (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis bubble diagram: the circle size represents the count of DEGs enriched to the pathway, the color represents significance
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schwann, SGC, endothelial, macrophage, pericyte, 
fibroblast, neuron, and myeloid. Next, we tested the 
expression patterns of candidate key genes in these cell 
clusters and verified their expression patterns at the 

single-cell level. As expected, they were significantly 
expressed in immune-related cells; the key gene Abca1 
(Figs.  5E and F) and Fyb (Figs.  5G and H) was highly 
expressed in macrophages.

Fig. 2 (See legend on previous page.)
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Fig. 3 Immune infiltration landscape in DRG tissue and screened Hub genes related to immune traits by WGCNA. A Box chart, the difference of 
immune cell infiltration between the control group and the SNI group (symbol "*", "**", and "ns" respectively represent p-value < 0.05, p-value < 0.01, 
and non-significance.); (B) Heat map of the correlation of 28 types immune cells, the pie chart will be displayed only when the correlation P < 0.05, 
color represents correlation, color depth represents correlation significance. The darker the red represents the more significant the positive 
correlation, the darker the blue represents the more significant the negative correlation; (C) Network topology analysis under various soft threshold 
power. When the power value was 4, the independence degree was ≥ 0.85. (On the left: The X-axis shows the soft threshold power. The Y-axis 
reflects the fit index of the scaled-free topological model. On the right: The X-axis shows the soft threshold power. The Y-axis represents average 
connectivity (degree)); (D) The clustering tree and co-expression network of co-representation network modules are constructed based on 1-TOM 
matrix; (E) Correlation of modules (column) with immune traits (row). Red represents positive correlation, blue, negative correlation. Each unit 
includes correlation coefficient and p value. F Scatter plot showed the correlation between gene significance (GS > 0.5) and module membership 
(MM > 0.8). G Venn diagram, the intersection genes between module genes and DEGs



Page 7 of 15Zhang et al. Journal of Inflammation           (2023) 20:19  

Abca1 was highly expressed in mouse DRG tissue 
and significantly affected M1 polarization of macrophages
The expression of Abca1 was further validated in animal 
and cell experiments. RAW264.7 cells were stimulated with 
1µg/mL LPS at different time points to detect Abca1 and 
the corresponding inflammatory indicators (Fig.  6A). As 
expected, the results showed that Abca1 expression was 
significant at 6  h after LPS stimulation, and the inflam-
matory factors, TNF-α and IL-1β of macrophage M1 
polarization were significantly increased (Figs.  6B and 
C). Subsequently, qRT-PCR results (Fig.  6D) showed that 
Abca1 expression level increased significantly in SNI model 
DRG tissues. However, there was no significant difference 
in the expression level of Fyb (Fig. 6D). Therefore, our sub-
sequent studies mainly focus on Abca1. To further explore 
the effect of Abca1 on macrophage function, we knocked 
down Abca1 in macrophages. Figure 6E shows the siRNA 
knockdown efficiency; finally, siRNA4 was selected for 
subsequent assays. The results showed that when Abca1 
expression was downregulated, the expression of mac-
rophage inflammatory factors, TNF-α, and IL-1β was 
decreased (Fig. 6F, G, and H). Therefore, we speculated that 
Abca1 affects the polarization function of macrophage M1.

Discussion
The pathogenesis of NP is complex, but effective clini-
cal treatment is lacking [14]. The interference strategies of 
immune cell molecular function and signaling have shown 
great therapeutic potential in many diseases, yet their 
mechanism of action in NP is poorly understood [15, 16]. 
The present study aimed to analyze the patterns of immune 
cell infiltration in DRG tissues in NP and identify the key 
biomarkers. T cells act on intracellular signal transduction 
pathways by secreting various cytokines and expressing 
multiple transcription factors to participate in the occur-
rence and development of NP [17–19]. Subsequently, six 
hub genes (Abca1, Bach1, Cckbr, Col5a3, and Fyb) were 
closely related to Th1 cells infiltration, indicating their role 
in the occurrence and progression of NP. Among the can-
didate Th1 infiltration-related genes, Abca1 was validated 
as a potential key biomarker and target of NP. Novel hub 
genes and pattern recognition of immune infiltration have 
expanded the understanding of NP pathogenesis.

In this study, GO analysis (Figs. 2E) showed that the SNI 
group was significantly enriched in glucocorticoid metabo-
lism, synaptic component composition, G protein-coupled 
peptide receptor activity, and fatty acid linkage compared 

to the control group. Although glucocorticoids are classic 
anti-inflammatory drugs, activation of central glucocor-
ticoid receptors might aggravate hippocampal neuronal 
death and increase the neurotoxicity of CNS inflamma-
tion [20, 21]. In addition, previous studies have shown that 
inflammatory cytokines regulate synaptic structure and 
function after peripheral nerve injury, which might under-
lie NP and memory deficits caused by peripheral nerve 
injury [18, 19]. Jiang et al. [22] demonstrated that GPR151, 
a Gβγ-coupled receptor, induces ERK-dependent neuroin-
flammatory response and is involved in the maintenance of 
trigeminal neuralgia. Therefore, GPR151 may be a potential 
drug target for treating trigeminal neuralgia. Furthermore, 
a recent study showed that ω-6 polyunsaturated fatty acids 
exacerbate preclinical inflammation and induce revers-
ible peripheral nerve dysfunction resulting in pain [23]. 
Moreover, KEGG analysis (Figs. 2F) showed that neuroac-
tive ligand-receptor effects [24], calcium signaling pathway 
[25], PI3K-Akt signaling pathway [26], MAPK signaling 
pathway [27], and TGF-β signaling pathway differ signifi-
cantly between the SNI and control groups. These signal-
ing pathways have been studied extensively with respect to 
inflammatory effects and NP. In conclusion, the GO and 
KEGG results support the role of inflammation in NP.

In this study, the infiltration level of Th1 cells was sig-
nificantly higher in the SNI group than in the Con group 
in DRG tissue. Reportedly, CD4 T lymphocytes (mainly 
Th1 cells) infiltrating the spinal cord develop nerve 
injury-induced behavioral hypersensitivity responses [28]. 
WGCNA indicated that the blue module was enriched for 
genes expressed during Th1 cell infiltration. Furthermore, 
the intersection genes of the blue module and DEGs were 
considered hub genes related to Th1 infiltration (Abca1, 
Bach1, Cckbr, Col5a3, and Fyb). Finally, we identified 
Abca1 and Fyb as the key genes closely associated with Th1 
cell infiltration in NP pain through external data set valida-
tion. Correlation analysis between Abca1 and immune cells 
showed that Abca1 was significantly correlated with Th1 
cells (R = 0.81, P = 1E-05). Interestingly, single-cell analy-
sis revealed that Th1 infiltration-related genes (Abca1 and 
Fyb) were expressed in macrophages. Reportedly, the non-
neuronal interactions in DRG tissue influence the develop-
ment of NP [29]. Davoli-Ferreira et  al. [30] demonstrated 
that regulatory T cells relieve NP by inhibiting the Th1 
response at the site of peripheral nerve injury. Although the 
results of immune infiltration showed no significant differ-
ence in the infiltration level of macrophages between the 

(See figure on next page.)
Fig. 4 Verification the correlation between Hub gene expression and immunity. A, B Hub gene expression level was verified by external dataset; 
(C, D) ROC curve shows validation efficiency; (E) Lollipop plot showed the correlation between Abca1 and infiltrating immune cells. (The larger 
the circle size, the stronger the correlation; p < 0.05 was considered statistically significant.); (F) The correlation between Abca1 and Th1 cells. G 
Lollipop plot showed the correlation between Fyb and infiltrating immune cells. (The larger the circle size, the stronger the correlation; p < 0.05 was 
considered statistically significant.); (H) The correlation between Fyb and Th1 cells
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Fig. 4 (See legend on previous page.)
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Fig. 5 Flow analysis of single cell data and expression pattern of Hub gene at single cell level. A, B Gene filtering and PCA clustering of the gene 
expression matrix. C, D t-SNE projections and cell subset annotation of SNI model DRG tissue. E, F Expression pattern of Abca1 at the single cell 
level, shown in t-SNE figures and violin maps. (G, H) Expression pattern of Fyb at the single cell level, shown in t-SNE figures and violin maps
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SNI and Con groups, macrophages have extremely high 
plasticity and complex heterogeneity, so it is essential to 
understand the molecular characteristics of macrophages 

in different times and spaces and different lineages. Stud-
ies have shown that there are two sources of macrophages: 
macrophages (MDMs) derived from monocytes; the other 

Fig. 6 In vivo and in vitro experimental verification. A, B, C Expression levels of Abca1 and inflammatory factors in Raw264.7 cells stimulated by (LPS 
1µg/mL) at different times. D Expression levels of Abca1 and Fyb in SNI model DRG tissue. E Abca1 silencing efficiency. F, G, H Expression levels of 
inflammatory factors after Abca1 was down-regulated
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are macrophages (TRMs) that reside in tissues [31]. Mir-
iam Merad [32] study found that TRMs highly expressed 
Ccl17 and Tgfb1 and proved that these genes could pro-
mote the recruitment, differentiation, and amplification of 
Treg cells, resulting in a significant increase in the num-
ber of regulatory T (Treg) cells in tissues. Undoubtedly, it 
is substantial to trace the origin of macrophages with high 
Abca1 expression and explore how it affects Th1 cell infil-
tration. Therefore, we hypothesized that Abca1 promotes 
Th1 cells infiltration by affecting macrophage function in 
DRG tissues, thereby inducing NP.

Abca1 is a member of the ATP-binding cassette 
transporter (ABC) superfamily and a crucial cell-sur-
face protein promoting cholesterol efflux. Glial cells 
express TLR4, mediating the secretion of inflammatory 
cytokines, chemokines, and bioactive lipids [33, 34]. Neu-
roinflammation mediated by infiltrating immune cells 
in the spinal cord and DRGs is an essential component 
of neuropathy [35]. However, the mechanism by which 
Th1 cells infiltration in DRG tissue induces abnormal 
pain after peripheral nerve injury has not been studied 
extensively. The current results showed that the expres-
sion level of Abca1 was significantly increased in DRG 
tissues of the SNI model. Subsequently, after stimulation 
of RAW264.7 cells with 1 g/mL LPS, the levels of TNF-α 
and IL-1β were increased significantly; however, this 
effect was reversed when Abca1 was knocked down in 
macrophages. Therefore, we proposed that Abca1 affects 
the function of M1 polarization in macrophages. Niehaus 
et al. [36] found that macrophages in DRG are critical in 
initiating and maintaining mechanical hypersensitivity in 
NP in mice. Furthermore, interferon-gamma (IFN-γ) is a 
potent macrophage activator [37], and thus, the mecha-
nism underlying the interaction between macrophages, 
Th1 cells and inflammatory effect in DRG leading to NP 
needs an in-depth exploration. Therefore, the underlying 
mechanism may be that Abca1 induces M1 activation of 
macrophages to secrete proinflammatory factors, which 
in turn promotes naive CD4 T cells to differentiate into 
Th1 cells and enhances Th1 cell-derived IFN-γ-mediated 
inflammatory effects.

Reportedly, T cells infiltrate the damaged sciatic nerve 
after CCI, and passive transfer of Th1 T cells can restore 
the nerve sensitivity in athymic nude mice [38]. Costigan 
et al. [10] demonstrated a functional role of IFN-γ sign-
aling in generating pain-like hypersensitivity responses 
after nerve injury in adults. Intrathecal injection of IFN-γ 
into the spinal cord induces hyperalgesia in naive animals 
[39], stimulates microglia via IFN-γR, interferes with the 
signaling, and inhibits neural mechanical hypersensitiv-
ity [40]. Despite the close association of Th1 cytokines 
with nerve injury-induced pain, the exact contribution 
of Th1 cells remains to be determined. An in-depth study 

of immune cell crosstalk would clarify the specific role 
of infiltrating CD4 T lymphocytes in developing NP and 
guide the designing therapies for the cytokines/mecha-
nisms underlying NP. Therefore, intervention strategies 
targeting Th1 cells infiltration into the DRG might con-
tribute to the establishment of anti-NP hypersensitivity 
responses in humans.

Neuroimmune signaling might underlie the develop-
ment of abnormal pain after nerve injury [41, 42]. Our 
study showed that Abca1 siRNA treatment reduced the 
mRNA levels of proinflammatory mediators, includ-
ing  TNF-α, and  IL-1β, in cultured RAW264.7 cells acti-
vated by LPS. Interestingly, Abca1 was closely associated 
with Th1 cell infiltration in the model of peripheral nerve 
injury. Therefore, the effect of Abca1 on macrophage 
function and mediating Th1 cell infiltration will further 
expand Neuroimmune signaling communication in neu-
ropathic pain; the underlying mechanism is shown in 
Fig.  7. Developing targeted therapies for peripheral NP 
is essential by using immune infiltration-related genes as 
starting points.

Materials and Methods
Data acquisition and preprocessing
The bulk datasets (GSE102721, GSE149770, and GSE24982) 
and single-cell transcriptome data (GSE174430) were obtained  
from Gene Expression Omnibus (GEO) database (https:// 
www. ncbi. nlm. nih. gov/ geo/). First, the practical extrac-
tion and reporting language (Perl) (https:// www. perl. org/ 
get. html) was used for quick and accurate processing of 
the file paths that required R package analysis. Then, R 
language (Rv3.6.3 and Rv4.1.1) (https:// www.r- proje ct. 
org/) was used for data analysis. Next, two gene expres-
sion matrices were merged using the “limma” package 
[43], and batch effects were removed for subsequent anal-
ysis. Finally, the “ggplot2” package [44] was used to draw 
UMAP to visualize the results of batch effect removal.

Difference and enrichment analysis
The “limma” package was applied to screen the differ-
entially expressed genes (DEGs) in the Sham and SNI 
groups. P-value < 0.05 and |log2 FC|> 0.5 defined the sig-
nificantly different genes. The “ggplot2” package drew the 
heat map and the volcano plot. The “clusterProfiler” [45], 
“org.Mm.eg.db”, and “ggplot2” packages were applied for 
the analysis of Gene Ontology (GO) [46] and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [47, 48]. The 
GO analysis included biological process (BP), molecu-
lar function (MF), and cellular component (CC). KEGG 
analysis was used to determine the pathways of biological 
molecular interaction. A false-discovery rate (FDR) < 0.25 
and P < 0.05 were used to screen out significant functional 
enrichment.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.perl.org/get.html
https://www.perl.org/get.html
https://www.r-project.org/
https://www.r-project.org/
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Evaluation of immune cell infiltration
The ssGESA algorithm was applied to explore the level 
of immune cell infiltration using packages “GSVA” 
[49] and “GSEABase.” In addition, the “ggplot2” pack-
age was applied to draw a boxplot and illustrate the 
differences in infiltrating immune cells. Further-
more,  28 types of infiltrating immune  cells  were  plot-
ted  using  the  “corrplot”  package  (https:// github. com/ 
taiyun/ corrp lot).

WGCNA
WGCNA [13] was employed to identify the immune cell 
infiltration-related module genes and explore the correla-
tion between the immunophenotypes and module genes 
in the network. The top 5000 genes with median abso-
lute deviation were screened out for subsequent analy-
sis. First, the outliers of gene expression matrices were 
filtered by hierarchical cluster analysis. β = 4 (scale-free 
 R2 = 0.85) was selected to construct a scale-free network. 
Then, a dynamic hybrid cutting technology was used to 
construct the gene modules, and a cluster dendrogram 
was drawn (minModuleSize = 50, mergeCutHeight = 0.25, 
the colors represent different modules). Next, the corre-
lation heatmap between modules and immune traits was 
drawn; rows represented modules, columns represented 
traits, and the correlation and P-value were displayed 
in boxes. The correlation between gene expression and 
immune characteristics was determined by screening 
gene significance (GS > 0.5) and module membership 
(MM > 0.8). Finally, the intersection of genes of interest-
ing modules and DEGs constituted the candidate key 
genes. The “VennDiagram” package [50] was used to 
draw the Venn plot and show the intersection results.

Identification and verification of key genes
The differential expression of candidate key genes was 
verified through an external dataset, and the key genes 
with the highest significance were determined. Next, the 
“ggpubr” and “ggExtra” packages were applied for Spear-
man’s correlation analysis on key genes and infiltrating 
immune cells, and a lollipop plot was used to visualize 
the analysis results.

Analysis at the single‑cell level
DRG tissue-derived single-cell RNA sequencing dataset 
in the SNI model (GSE174430) was downloaded from 
the GEO database. “Seurat” [51] package was used for 
downstream analysis. The cells were filtered with nFea-
ture_RNA > 500 and nFeature_RNA < 5000 and percent.
mt < 5%. “LogNormalize” method was utilized to nor-
malize and scale gene expression. Then, PCA was used 
to identify the major principal components (PCs), and 
the JackStraw and ScoreJackStraw functions were used 
to visualize the P-value distribution. “Harmony” package 
was used for batch correction to avoid batch effects, and 
the FindClusters function was used to classify the cells 
into eight clusters with a resolution of 0.1. The cell types 
were manually annotated by cellMarker and panglaoDB. 
Finally, the expression patterns of key genes were identi-
fied and visualized by t-SNE and VlnPlot.

Animals and models
A total of 12 healthy 8-week-old male mice were pur-
chased from the Experimental Animal Center of Guang-
zhou university of Chinese Medicine and randomly and 
equally divided into two groups (Sham and SNI). Before 
any experiment, all animals were acclimatized for one 

Fig. 7 Hypothesis mechanism diagram (Created with BioRender.com)

https://github.com/taiyun/corrplot
https://github.com/taiyun/corrplot
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week. First, SNI model [52] was established, and 10% 
chloral hydrate (0.3 mL/100 g) was injected intraperito-
neally for anesthesia. The sciatic nerve and its branches 
were then exposed. Next, the tibial and the common per-
oneal nerve were ligated with 6–0 non-invasive sutures 
and closely connected with distal resection, leaving the 
sural nerve intact. In the Sham group, the sciatic nerve 
and its branches were exposed but not ligated.

Cell culture and inflammatory model
Mouse macrophage cell line RAW264.7 was cultured in 
DMEM/High Glucose with 10% fetal bovine serum (FBS), 
100 U/mL of penicillin, and 100  µg/mL of streptomycin 
and maintained at 37 °C in the atmosphere of 95% humidity  
and 5%  CO2. RAW 264.7 cells were plated at a density 
of 1 ×  l05 cells/mL/ well in 6-well plates and divided into 
four groups. Lipopolysaccharide (LPS) was solubilized 
in phosphate-buffered saline (PBS). The control group 
was treated only with DMEM maintenance medium. The 
LPS group was stimulated at 6, 12, and 24 h, respectively, 
and the optimal time points were selected for subsequent 
studies.

Identification of efficient Abca1 siRNA
The siRNA of Abca1 was designed and synthesized by 
Tsingke Biotechnology (Beijing, China), and the sequence 
was as follows: siAbca1-Mouse (#1): 5’-UUG AUG AGC 
CUG ACU UCU GTT-3’ and 5’-CAG AAG UCA GGC UCA 
UCA ATT-3’; siAbca1-Mouse (#2): 5’-UAG UUG UUA 
UCC UCG UAC CTT-3’ and 5’-GGU ACG AGG AUA ACA 
ACU ATT-3’; siAbca1-Mouse (#3): 5’-AGU AGA UCU UGG 
AAG GGA CTT-3’ and 5’-GUC CCU UCC AAG AUC UAC 
UTT-3’; siAbca1-Mouse (#4): 5’-AUG ACA ACC UUG 
GAU CCA CTT-3’ and 5’-GUG GAU CCA AGG UUG UCA  
UTT-3’. RAW 264.7 cells were plated at a density of 
1 ×  l05 cells/mL/well in 6-well plates and divided into five 
groups. According to the manufacturer’s instructions, 
when the cells had grown to 60–70%, the cells were trans-
fected using the ZetaLife Advanced DNA/RNA Transfec-
tion reagent. Total RNA of cells was extracted to detect 
the expression of Abca1, and siRNA with the highest 
knockdown efficiency was screened out for subsequent 
studies.

RNA extraction and quantitative real‑time polymerase 
chain reaction (qRT‑PCR)
Trizol reagen (Beyotime, R0016) was used to extract tot
al  RNA from  cells and DRG tissue. Reverse transcrip-
tion  was  performed  using  Prime Script RT reagent kit 
(Perfect Real Time). β-actin was used as an internal ref-
erence. RT-qPCR assays were carried out using Light 
Cycle instrument, and the relative expression level was 
analyzed using the  2^-(∆∆Ct) formula. The primer 
sequences are listed in Table 2.

Statistical analysis
All statistical analyses were conducted in the R language 
(Rv3.6.3 and Rv4.1.1). All statistical tests were bilateral, 
and P < 0.05 indicated a statistically significant difference.

Conclusion
Herein, whole transcriptome and single-cell sequenc-
ing data were combined to investigate the pattern of 
immune infiltration in DRG tissues and the key genes 
in NP. The current study showed that Th1 infiltration in 
DRG tissue was involved in the pathological process of 
NP induced by peripheral nerve injury. The underlying 
mechanism may be that Abca1 affects the M1 polariza-
tion of macrophages and promotes Th1 cell infiltration in 
DRG tissues. However, the mechanism of neuroimmune 
inflammation is rather complex and needs further inves-
tigation. This study provided novel ideas and potential 
targets for the pathogenesis and treatment of NP.
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