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Abstract 

Immune dysregulation has been identified as a critical cause of the most common types of cardiovascular diseases 
(CVDs). Notably, the innate and adaptive immune responses under physiological conditions are typically regulated 
with high sensitivity to avoid the exacerbation of inflammation, but any dysregulation can probably be associated 
with CVDs. In this respect, progranulin (PGRN) serves as one of the main components of the regulation of inflamma‑
tory processes, which significantly contributes to the immunopathogenesis of such disorders. PGRN has been intro‑
duced among the secreted growth factors as one related to wound healing, inflammation, and human embryonic 
development, as well as a wide variety of autoimmune diseases. The relationship between the serum PGRN and TNF-α 
ratio with the spontaneous bacterial peritonitis constitute one of the independent predictors of these conditions. 
The full-length PGRN can thus effectively reduce the calcification of valve interstitial cells, and the granulin precursor 
(GRN), among the degradation products of PGRN, can be beneficial. Moreover, it was observed that, PGRN protects 
the heart against ischemia-reperfusion injury. Above all, PGRN also provides protection in the initial phase follow‑
ing myocardial ischemia-reperfusion injury. The protective impact of PGRN on this may be associated with the early 
activation of the PI3K/Akt signaling pathway. PGRN also acts as a protective factor in hyperhomocysteinemia, prob‑
ably by down-regulating the wingless-related integration site Wnt/β-catenin signaling pathway. Many studies have 
further demonstrated that SARS-CoV-2 (COVID-19) has dramatically increased the risks of CVDs due to inflammation, 
so PGRN has drawn much more attention among scholars. Lysosomes play a pivotal role in the inflammation process, 
and PGRN is one of the key regulators in their functioning, which contributes to the immunomodulatory mechanism 
in the pathogenesis of CVDs. Therefore, investigation of PGRN actions can help find new prospects in the treatment 
of CVDs. This review aims to summarize the role of PGRN in the immunopathogenesis of CVD, with an emphasis on its 
treatment.
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Cardioimmunology
Many types of cardiovascular diseases (CVDs) are asso-
ciated with complex immune responses that can sig-
nificantly contribute to their progression and remission. 
In recent years, extensive research has established that 
some immune cells either reside in the heart or have very 
complicated interactions with cardiomyocytes through 
permanent blood circulation. Studies have further con-
firmed the presence of mast cells, T and B lymphocytes, 
and neutrophils in the heart. Macrophages and dendritic 
cells are also present in normal heart valves. Besides, 
the pericardium contains various leukocytes, includ-
ing macrophages and B cells [1]. The heart of a healthy 
adult rat accordingly holds all major classes of leuko-
cytes, e.g., mononuclear phagocytes, neutrophils, and 
T and B lymphocytes [2]. Therefore, immune cells are 
typically expected to play a vital role in regulating the 
immune system responses in the heart. In all types of 
CVDs, inflammation has been further documented as 
one of the critical events in the initiation and spread of 
the pathological processes. For example, shortly after the 
onset of ischemia, the resident cardiac mast cells release 
the stored contents of their granules [3], whereas mac-
rophages and cardiomyocytes embark on the production 
of inflammatory cytokines. This covers the production of 
several cytokines and chemokines including interleukin 1 
(IL-1), interleukin 6 (IL-6), tumor necrosis factor- alpha 
(TNF-α) and chemokine (C-C motif ) ligand 2 (CCL2) 
[4]. Cardiac fibroblasts also release hematopoietic growth 
factors, including granulocyte-macrophage colony-stim-
ulating factor (GM-CSF) [5]. These events accordingly 
increase monocyte and neutrophil recruitment, leading 
to leukocytosis, which constitutes one of the independ-
ent risk factors for CVDs [6]. In myocarditis, T cell dif-
ferentiation can crucially contribute to aggravating or 
alleviating such conditions. Many studies have thus dem-
onstrated that the T helper 17 (Th17) cells initially affect 
cardiac fibroblasts and cause the progression of cardio-
myopathy, while regulatory T cells (Tregs) are likely to 
protect and reduce inflammation in myocarditis (Fig. 1) 

[7, 8]. Interestingly, atrial fibrillation (AF) occurrence 
elevates under inflammatory conditions, such as sepsis 
and rheumatoid arthritis [9]. Based on previous research, 
there is a relationship between AF and higher inflam-
matory biomarkers, such as C-reactive protein (CRP), 
TNF-α and white blood count [10]. The endothelial cells 
in the blood vessels of the heart produce adhesion mole-
cules, such as vascular cell adhesion molecule 1 (VCAM-
1) and selectins, soon after myocardial infarction (MI) 
within minutes. In this case mast cells release TNF-α, 
and molecular damage-associated molecular patterns 
(DAMPs), such as high mobility group box 1 (HMGB1), 
adenosine triphosphate (ATP), calprotectin (S100A8/A9) 
whereas other cells, including macrophages and fibro-
blasts, consequently produce cytokines and chemokines, 
such as CCL2 and IL-1. These events then lead to a 
massive influx of neutrophils and monocytes from the 
circulation into the heart tissue in 1 day. In 3-7 days, neu-
trophils withdraw from the heart tissue. Monocytes also 
accumulate, produce transforming growth factor beta 
(TGFβ), interleukin 10 (IL-10) and vascular endothelial 
growth factor (VEGF) as well as give rise to collagen pro-
duction by fibroblasts, reduced inflammation via Tregs, 
and neoangiogenesis. Such events have been thus far 
reported in other CVDs, including myocarditis. SARS-
CoV-2 (COVID-19) is an infection with an inflamma-
tory component, where aggravation and the cytokine 
storm phenomenon lead to multiple organ failures. The 
inflammatory issues related to the COVID-19 infection 
also raised the role of inflammation in the pathogenesis 
of CVDs. This review article accordingly aims to inves-
tigate the role of PGRN in the regulation of the immune 
responses, especially the inflammatory processes, in vari-
ous types of CVDs. In order to present a comprehensive 
overview of the problem, we will perform a thorough 
analysis of the structure and functions of the PGRN and 
present its role in the physiological processes related to 
CVDs with particular attention paid to each stage of the 
pathology and its subsequent consequences, and also 
possible clinical implications.

Fig. 1  Summary diagram of immunopathogenesis involved in cardiovascular disease
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Progranulin (PGRN)
PGRN constitute the pleiotropic growth factor and a sig-
nificant anti-inflammatory molecule with an important 
role in maintaining and regulating homeostatic dynamics 
in normal tissue development, regeneration, host defense 
response and proliferation [11]. Expression of PGRN is 
observed in the immune cells, epithelial cells, chondro-
cytes and neurons [12, 13]. PGRN can thus directly bind 
to TNF receptors (TNFRs) and disrupt the interactions of 
TNF-α with such receptors [14–16]. The increased serum 
PGRN levels were observed in different diseases, which are 
characterized by the presence of chronic low-grade inflam-
mation (i.e., meta-inflammation), like atherosclerosis [17], 
neurodegenerative diseases [18], breast cancer [19], dia-
betes mellitus [20], as well as metabolic syndrome [21]. In 
addition, PGRN has been documented as one of the auto-
crine growth factor consisting of seven-and-a-half tandem 
repetitions of the granulin module arranged in the P-G-F-
B-A-C-D-E sequence [22]. The proteolytic degradation of 
the PGRN holoprotein takes place both in the intra- and 
extracellular spaces, leading to the release of individual 
45-granulin precursor (GRN) fragments contained in the 
56-57 amino acid residues with a molecular weight of about 
~ 6 kDa, which occur in both individual and combined 
forms (~ 6-25 kDa) after proteolysis [23, 24]. Proteolytic 
degradation is also mediated by various intra- and extra-
cellular serine and threonine proteinases, such as matrix 
metalloproteinase 9 (MMP-9), matrix metalloproteinase 
12 (MMP-12), matrix metalloproteinase 14 (MMP-14), dis-
integrin, and metalloproteinase with the thrombospondin 
7 motif (ADAMTS-7), neutrophil elastase (ELANE), and 
proteinase 3 (PRTN3), wherein the mutual interactions 
are regulated by feedback loops [25, 26]. PGRN is a critical 
regulator in various biological processes, like wound heal-
ing [27] and bone regeneration [28]. The PGRN knockout 
(KO) mice had shown the exacerbation of inflammatory 
diseases, including atherosclerosis and rheumatoid arthri-
tis [16]. Considering the stage and the factors contributing 
to the tissue microenvironment, researchers have indicated 
the pro- or anti-inflammatory activities of PGRN, which 
may be protective or harmful for humans [29]. Adminis-
tering the recombinant human PGRN (rPGRN) had thus 
largely reduced the inflammatory response in the cardio-
vascular system of animals with rheumatoid arthritis. On 
the other hand, deficiency in the PGRN level had worsened 
atherosclerosis in apolipoprotein E (ApoE) KO mice [16].

TNF‑α response regulation by PGRN  
in cardiovascular diseases
The reduction in the PGRN/TNF-α ratio was observed in 
the course of many inflammatory diseases. In this case, 
the PGRN/TNF-α ratio has been shown to be one of the 
independent predictors of high systolic blood pressure 

(SBP), implying the importance of the inflammatory 
components involved in hypertension. TNF-α acts as 
one of the crucial inflammatory cytokines imparting a 
significant contribution to the start and continuance of 
immunological reaction. Extensive research has further 
demonstrated the higher level of TNF-α in CVDs, as well 
as in conditions associated with low-grade inflammation, 
such as obesity [30], diabetes mellitus [31], metabolic 
syndrome [32], and atherosclerosis [33]. Hypertension 
constitutes an independent risk factor for cardiovascular, 
brain, and kidney diseases. For more than 50 years, accu-
mulating literature has further emphasized the contribu-
tion of inflammation to hypertension pathogenesis. The 
immune cells are similarly found in the veins and kid-
neys of people with hypertension. In this case, vasculitis 
can centrally contribute to the development of essential 
hypertension [34]. Furthermore, low-grade inflamma-
tion plays a leading role in the pathogenesis of isolated 
systolic and systolic-diastolic hypertension. The anti-
inflammatory activities of PGRN can be thus attributed 
to the inhibition of the mitogen-activated protein kinase 
(MAPK) signaling and TNFR-mediated nuclear factor-κB 
(NF-κB) as well as competitive binding to TNF-R2, which 
is observed in the bone marrow-derived macrophages 
[22]. A significant positive correlation had been accord-
ingly observed between the serum PGRN level and 
both SBP and diastolic blood pressure (DBP) in the dia-
betic patients with microangiopathy [35]. Accordingly, 
PGRN, as one of the competitive molecules of TNF-α, 
is expressed in case of hypertension secondary to higher 
inflammatory cytokines, especially TNF-α. Moreover, 
the serum PGRN/TNF-α ratio has been shown to be 
crucial for exploring the inflammatory microenviron-
ment in patients. The lower ratio of PGRN/TNF-α in the 
cases with hypertension, compared with healthy samples, 
accordingly suggests the regulation and control of TNF-α 
through PGRN [36].

Role of PGRN in the immunopathogenesis 
of calcific aortic valve disease
Calcific aortic valve disease (CAVD) constitute com-
mon condition which affect 25% of people aged over 
65. CAVD and atherosclerosis share common risk fac-
tors. Despite the common causes of both disorders (e.g., 
smoking, hypertension, dyslipidemia, diabetes mellitus, 
metabolic syndrome, and inflammation), the molecular 
mechanisms associated with CAVD are still not well rec-
ognized, so no effective drug treatment has been found 
for this condition, except valve replacement [37, 38]. The 
PGRN expression was further observed in the aortic valve 
and its level is largely increased in patients with CAVD. 
In addition, PGRN vitally contributes to chondrocyte 
proliferation, ectopic calcification, and differentiation 



Page 4 of 14Saeedi‑Boroujeni et al. Journal of Inflammation            (2023) 20:1 

[12, 39, 40]. The microarray results confirmed that PGRN 
was one of the CAVD-associated molecules. However, 
the PGRN contribution to CAVD progression is still not 
fully understood. Valve interstitial cells (VIC) constitute 
a fibroblastic population, but their differentiation has 
been observed into a myofibroblastic phenotype under 
cell culture. Such cells are fundamental in the calcifica-
tion process, and could be essential for the mechanisms 
involved in heart valve calcification. The human VICs 
and the primary porcine ones isolated from human/por-
cine and genetically modified mice had been exploited for 
investigating the PGRN contribution to CAVD develop-
ment as well as discovering the related molecular mecha-
nisms. The study results had indicated that the full-length 
PGRN had effectively reduced the GRN-mediated cal-
cification. The PGRN degradation products and VICs 
had consequently accelerated the calcification of VICs 
[41]. PGRN/GRN are thus among the new factors in the 
pathogenesis of VICs and constitute a good therapeutic 
target to treat and prevent CAVD. In addition, the PGRN 
expression has been observed in VICs that increase in 
the valves of the patients with CAVD [42, 43]. The GRN 
has largely enhanced the expression of the calcified 
valve. Using an in  vitro model, valve calcification had 
implied the higher levels of the GRN expression, while 
the full-length PGRN had dwindled. The study findings 

correspondingly revealed that the full-length PGRN and 
GRN had been involved in the CAVD pathogenesis [44, 
45]. PGRN also prevents the aortic valve calcification in 
CAVD through the inhibition of the osteogenic differen-
tiation of VICs and myofibroblastic transition [41]. In this 
line, one investigation found that PGRN could accelerate 
the regeneration of bones by inhibiting the inflamma-
tory response and accelerating the osteogenic differentia-
tion [46]. CAVD may thus have a specific inflammatory 
response to calcification. Furthermore, TNF-α enhances 
the osteogenic differentiation of VICs in CAVD (Fig. 2). 
On the contrary, TNF-α moderates the osteogenic dif-
ferentiation capacity in bone remodeling, and such a 
difference can be prompted by the special structural 
characteristics of the valve [47, 48].

Regulation of Wnt/β‑catenin signaling pathway 
by PGRN
PGRN down-regulates the Wnt/β-catenin signaling path-
way, which is evolutionarily conserved developmental 
signaling cascade with a robust performance in the regu-
lation of various biological processes for tissue develop-
ment and human disease pathogenesis [49]. Even though 
the Wnt/β-catenin signaling pathway in the kidney has 
been shown to be essential for nephron formation, and 
is functionally silenced after differentiation in the adult 

Fig. 2  The schematic representation of the histological change progression during calcific aortic valve disease, wherein PGRN can suppress 
calcification and disease progression whereas GRN and TNF-α could promote it
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kidneys, new documents suggest that the reactivation 
of the Wnt/β-catenin signaling after renal injuries is of 
great importance in their acceleration. The activity of 
this pathway also affects regulatory molecules that cov-
ers transient receptor potential channel 6 (TRPC6), angi-
otensin II receptor type 1 (AT1) and zinc finger protein 
SNAI1. Moreover, Wnt and β-catenin is associated with 
the activation of the podocytes of patients with diabetic 
nephropathy and focal segmental glomerulosclerosis, 
indicating the clinical association of this pathway with 
the human proteinuric renal diseases [50]. The Wnt/β-
catenin signaling pathway in the cardiovascular system 
is further implicated in myocardial remodeling following 
pathological damage [51]. In this respect, Nakagawa et al. 
[52] demonstrated that the continuous activation of the 
Wnt/β-catenin signaling pathway in the endothelial cells 
was possibly the reason for heart failure. While func-
tional genomic analyses have highlighted the role of the 
Wnt/β-catenin signaling pathway in the PGRN deficiency 
in the human fetal neural progenitors [53]. PGRN can 
down-regulate the Wnt1/β-catenin signaling pathways in 
hyperhomocysteinemia, with various activities in diverse 
cell types through processes such as the regulation of the 
cell fate determination, the expression of the podocyte 
differentiation markers, as well as the permeability of the 
endothelial cells. PGRN is also assumed as a protective 
factor in hyperhomocysteinemia, possibly by negatively 
regulating the Wnt/β-catenin signaling pathway [54].

Therapeutic potential of PGRN 
in hyperhomocysteinemia
Homocysteine is a sulfhydryl-containing amino acid that 
is not obtained from diet, but synthesized as an inter-
mediate metabolite in the methionine cycle. As well, 
hyperhomocysteinemia in the absence of kidney dis-
ease indicates a disorder in sulfur amino acid metabo-
lism, which occurs as a result of a deficiency in vitamins 
(folate, B12 and B6) or genetic defects. Besides, hyper-
homocysteinemia is associated with inflammation and 
atherosclerosis. Based on epidemiological and clinical 
research, hyperhomocysteinemia has been introduced as 
one of the independent leading risk factors for developing 
CVDs and end-stage renal disease [55, 56]. Even though 
researchers have so far applied several methods to reduce 
the hyperhomocysteinemia levels in clinical trials and 
experimental studies, there are no efficient treatments for 
the complete prevention of renal injury and hyperhomo-
cysteinemia-induced cardiac conditions [57, 58]. PGRN 
acts as one of the down-regulators of in acute kidney 
injury [59]. Nonetheless, the contribution of PGRN on 
the pathogenesis of hyperhomocysteinemia is unknown. 
Significant reduction in the PGRN levels had been 
observed in the heart and kidney in the rodent model 

of hyperhomocysteinemia where podocytes essentially 
contribute to the circulation of the glomerular basement 
membrane, the regulation of the glomerular filtration, 
as well as the maintenance of the glomerular filtration 
barrier [60, 61]. The damage to the above-mentioned 
components leads to the permeability of the glomerular 
capillary, resulting in glomerular disease and proteinu-
ria. PGRN deficiency exacerbates the podocyte fusion, 
podocyte shedding, inflammatory response, glomerular 
basement membrane destruction and higher proteinuria 
in hyperhomocysteinemia (Fig. 3) [54]. Additionally, con-
ducted research has established a relationship between 
mortality rate and cardiovascular complications caused 
by hyperhomocysteinemia [62]. According to animal 
research, hyperhomocysteinemia is involved in cardiac 
hypertrophy [63]. The PGRN deficiency also exacerbates 
the hyperhomocysteinemia-induced left ventricular dila-
tion and hypertrophy in a rodent models, suggesting that 
PGRN is one of the target molecules vital to maintain 
cardiovascular function [54].

Immunoregulatory effects of PGRN in myocardial 
infarction
Worldwide, ischemic heart disease is the main cause 
of mortality in humans [64, 65]. According to previ-
ous studies, growth factors or adipokines are secreted 
by adipose tissues play significant role in heart func-
tion [66, 67]. Multiple adipokines exhibit cardioprotec-
tive features, but some of them have been linked to the 
pathogenesis of CVD [67]. Adipokines, consisting of adi-
ponectin and some C1q/TNF-related proteins (CTRPs), 
accordingly adopt an appropriate function in the heart 
and blood vessels [67, 68]. Moreover, adipokines protect 
against myocardial ischemia-reperfusion injury and ath-
erosclerosis via the anti-inflammatory, anti-apoptotic, 
anti-thrombotic and anti-oxidant effects [67, 69, 70]. In 
addition, CTRPs apply protective impacts against cardiac 
remodeling and myocardial ischemia-reperfusion injury 
through the anti-apoptotic mechanism of action [71, 72]. 
Researchers have also demonstrated the anti-apoptotic 
effects of cardioprotective adipokines by activating the 
PI3K/Akt signaling pathway [71, 72]. As stated, down-
stream through PI3K/Akt signaling pathway have been 
shown to be key cell proliferation and survival regulators, 
involved in prevention of cell apoptosis [73, 74]. In the 
cardiovascular system, the high expression of PGRN has 
been also observed in the macrophages in the atheroscle-
rotic arteries and the vascular smooth muscle cells [75]. 
PGRN plays a role in atherosclerosis, as the major cause 
of infarction and myocardial ischemia [76]. Nonetheless, 
its impact on acute myocardial ischemia-reperfusion 
injury is unknown. In a mouse model of acute myocardial 
ischemia-reperfusion injury, the PGRN administration 
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had improved cardiac function, reduced inflammation, 
and protected heart from damage through anti-apoptotic 
effect. The elevated PGRN expression after myocardial 
ischemia-reperfusion injury in heart tissue is observed 
[77]. Using the PI3K/Akt inhibitor, the LY294002 had 
further revealed that PGRN could exert its cardioprotec-
tive impacts via the activation of the PI3K/Akt signaling 
pathway. However, adipokines in atherosclerosis could 
suppress atherogenesis, with a protective or preventive 
role in the coronary heart disease [66]. The PGRN dele-
tion in mice with atherosclerosis was also linked to the 
higher expression of adhesion molecules and inflam-
matory cytokines. Furthermore, PGRN had exhibit an 
anti-atherogenic impact in these mice [16]. In addition, 
PGRN increases the protection of the vascular endothe-
lium via enhancing nitric oxide by activating the Akt/
endothelial nitric oxide synthase (eNOS) signaling path-
way [78]. PGRN secreted from the macrophages also 
generates a complex with apolipoprotein A-I (ApoA-I), 
contributing to the atherosclerotic plaque stabilization 
[43]. The PGRN deficiency alters the configuration of 
high-density lipoprotein (HDL). PGRN also declines the 
platelet-activating factor, acetylhydrolase, which may 
reduce the growth of the macrophage foam cells and sup-
press atherogenesis [43, 79]. Multiple cardioprotective 
adipokines, like CTRP9 and CTRP3, have also applied 

the same impacts in the earlier reports [69, 71, 72, 80]. 
The PGRN effects accordingly diminisheos edema, acute 
inflammation, congestion, as well as vasodilation in the 
heart tissue after acute myocardial ischemia-reperfusion 
injury [77]. During ischemia-reperfusion injury in the 
brain, PGRN reduces inflammation through the TNF-
α-mediated inhibition of the expression of cell adhesion 
molecules and neutrophil infiltration [15]. Moreover, 
the reduction of the hypoxia-induced inflammation by 
PGRN has been observed in the kidney tissue [59]. 
PGRN probably suppresses inflammation in the acute 
myocardial ischemia-reperfusion injury in this same 
way, however, more research is required for detecting its 
mechanisms. Further studies indicated that the mRNA 
for PGRN expression in the rat myocardium has strongly 
increased when myocardial ischemia-reperfusion injury 
have occurred [77]. The cardioprotective effect of PGRN 
under in  vivo conditions has not yet been fully identi-
fied. Cardiomyocyte death due to myocardial ischemia-
reperfusion injury is mainly associated with apoptosis 
[81]. In addition, cells overexpressing B-cell lymphoma 
2 (Bcl-2) can largely decline apoptosis and the size of 
the myocardial infarct once it occurs [82]. Furthermore, 
the PGRN administration prior to the ischemia induc-
tion has enhanced the Bcl-2 expression, suggesting that 
this anti-apoptotic molecules can act as cardioprotective. 

Fig. 3  Comparison between normal conditions and hyperhomocysteinemia in the proximal tube and bowman capsule with focus on the role 
of PGRN. The absence of PGRN In hyperhomocysteinemia activates the Wnt/β-catenin signaling pathway, which play a significant role in this 
pathological condition. However, presence of PGRN under normal conditions suppresses the Wnt/β-catenin expression
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Adiponectin was further observed to exhibit similar 
anti-apoptotic characteristics [72]. Although PGRN 
increases the Bcl-2 expression, it does not largely change 
the amount of apoptotic protein p53 [83]. In addition, 
this protein would protect against oxidative stress in the 
brain [15, 84] and block NF-κB, as an oxidative stress-
responsive transcription factor, resulting in decreased 
reactive oxygen species (ROS) formation by neutrophils 
[15]. Hence, the protective effect of PGRN in myocardial 
ischemia-reperfusion injury may be partly attributed to 
its antioxidant potentials. Based on the previous reports, 
the PI3K/Akt signaling pathway protects against M-IRIs 
[85, 86]. Administration of the recombinant PGRN can 
further reduce the size of infarct and lower infiltrated 
neutrophils count after the permanent occlusion of the 
left coronary artery in rats and enhance cardiac fibrosis 
and dysfunction after myocardial ischemia-reperfusion 
injury in rabbits [87]. The PGRN expression is largely 
marked in the ischemic area of the myocardium, espe-
cially the border area following the permanent occlusion 
of coronary artery. Moreover, cardiomyocyte death in 
myocardial infarction causes the release of DAMPs, and 
thus augments inflammatory components and leukocyte 
migration that accelerate phagocytosis via   removing 
the matrix debris and the dead cells [88, 89]. The PGRN 
expression is significantly elevated 24 h after focal cere-
bral ischemia [90]. The PGRN deficiency also exacerbates 
tissue injury via the increased infiltration of macrophages 
and neutrophils after renal ischemia in a mouse model 
[59]. Therefore, the up-regulated PGRN may be associ-
ated with cardioprotection via the regulation of the post-
ischemic inflammation. The PGRN expression in the 
immune cells, like macrophages and neutrophils, is fur-
ther up-regulated in the process of wound healing under 
the ischemic condition [27, 90].

PGRN secretion from neutrophils to regulate 
myocardial ischemia inflammation
PGRN was observed to merge with the neutrophil 
marker, NIMP-R14, when the permanent occlusion of 
the coronary artery is induced, indicating that neutro-
phils may be a cell-expressing PGRN after this condition. 
Moreover, the infiltration of the infarct area by neutro-
phils has been seen in the first few hours following the 
onset of myocardial ischemia. They generate granule 
components, like myeloperoxidase and ROS, and then 
exacerbate tissue damage [91]. Put differently, neutrophil 
infiltration is needed for resolving the post-myocardial 
ischemia-reperfusion injury inflammation [92]. Report-
edly, neutrophils are associated with post-myocardial 
ischemia-reperfusion injury inflammation and tissue 
repair. PGRN thus suppresses neutrophil migration [15]. 
Therefore, PGRN secreted from neutrophils may regulate 

post-myocardial ischemia-reperfusion injury inflam-
mation by an autocrine mechanism, and then influence 
other immune cells. In addition, intravenous administra-
tion of the recombinant PGRN largely reduces the size 
of the infarct 24 h after the permanent occlusion of the 
left main descending coronary artery (LCA) in mice. The 
recombinant PGRN significantly suppresses infiltrating 
neutrophils in the infarcted area 1 day after the perma-
nent occlusion of the LCA. The recombinant PGRN also 
significantly reduces neuronal injury after focal cerebral 
ischemia by inhibiting neutrophils [15], and attenuates 
neutrophil infiltration when renal ischemia occurs [59]. 
Based on previous research findings, the extra accumu-
lation of neutrophils aggravates the size of the myocar-
dial infarct 24 h after the permanent occlusion of the 
LCA [93]. Furthermore, reduced neutrophil recruitment 
decreases the size of the infarct after the permanent 
occlusion of the LCA and following myocardial ischemia-
reperfusion injury [91, 94]. The creation of cardiac fibro-
sis also results in maintaining tissue integrity in the 
post-myocardial ischemia-reperfusion injury reparative 
response [88].

PGRN attenuation of myocardial fibrosis 
by activation PI3K/Akt and Wnt/β‑catenin 
inhibition
Fibrosis-induced tissue sclerosis is associated with 
impaired cardiac contractility and worsening fibrosis 
in the myocardium, which are associated with post-
ischemic cardiac dysfunction [95–97]. The serum PGRN 
levels are thus associated with the liver fibrosis in cases 
suffering from non-alcoholic fatty liver disease [98]. 
PGRN can thus reduce liver fibrosis following chronic 
injuries to the liver in mice via modulating inflammation 
[99]. PGRN is also known to be related to tissue fibrosis 
under inflammatory conditions. Administration of the 
recombinant PGRN accordingly improves cardiac dys-
function and left ventricular remodeling after myocar-
dial ischemia-reperfusion injury in rabbits. Furthermore, 
the extent of fibrosis in the myocardium is significantly 
reduced by the administration of the recombinant PGRN 
[100, 101]. The administration of recombinant human 
PGRN largely enhances cardiac function after ischemia 
by activating the PI3K/Akt signaling pathway [77]. 
Therefore, the protective impact of PGRN on myocar-
dial ischemia-reperfusion injury might be related to the 
early activation of PI3K/Akt. The Wnt/β-catenin signal-
ing also significantly contributes to the formation of the 
post-ischemic fibrosis and cardiac function [102, 103]. 
Moreover, the alteration of the Wnt/β-catenin signal-
ing speeds up progression of cardiac injury and adverse 
cardiac remodeling when ischemia occurs [104, 105]. 
Inhibiting the Wnt/β-catenin signaling thus suppressed 
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cardiac remodeling and fibrosis once ischemia had 
occurred in the mice [105]. Put differently, PGRN report-
edly regulates the Wnt/β-catenin signaling [106]. Hence, 
the administration of the recombinant PGRN may pre-
vent the worsening of cardiac fibrosis and dysfunction by 
the Wnt/β-catenin signaling inhibition after myocardial 
ischemia [107, 108].

PGRN deficiency and acceleration 
of age‑associated cardiac abnormality
It is widely known that cardiac aging is a complicated 
pathophysiological process associated with diverse bio-
logical changes, like left ventricular hypertrophy, an 
altered diastolic pattern, as well as diastolic dysfunction 
and heart rhythm [109, 110]. Likewise, the initiation 
of ventricular hypertrophy from the cell surface to the 
organs has been shown to be one of the signs of cardiac 
aging associated with the accumulation of lipofuscin (age 
pigment) as well as cardiomyocyte hypertrophy in the 
human and animal myocardium [111, 112]. Nonethe-
less, the mechanisms of the relationship between cardiac 
aging, cardiac dysfunction and hypertrophy have not 
yet been fully understood [113]. Moreover, the relation-
ship between a heterozygous mutation in PGRN and 
frontotemporal dementia (FTD) was observed. In this 
case, PGRN deficiency accelerates brain aging, with the 
characteristics of astrogliosis, tissue vacuolization, and 
microgliosis with lipofuscin accumulation [114, 115]. In 
addition, PGRN deficiency is likely to result in increased 
age-associated cardiac phenotypes, like cardiac dysfunc-
tion and hypertrophy. Even though researchers have so 
far introduced different mechanisms of age-associated 
cardiac hypertrophy, β-catenin and the respective down-
stream genes have been implicated in regulating patho-
physiological cardiac hypertrophy in adults [116, 117]. 
Activating the Wnt/β-catenin signaling pathway accord-
ingly seems to be caused by the binding of one or more 
serum factors, the frizzled (Fzd) family, to the cell surface 
receptors. Furthermore, the complement component 
1q (C1q) is among the Fzd-binding proteins. Research-
ers have also observed the increased expression of C1q 
and serum concentration in various tissues with age. In 
other words, the C1q binding to Fzd creates the com-
plex, which cleaves the ectodomain of the low-density 
lipoprotein (LDL) receptor-related protein [113]. Such a 
cleavage activates and translocates cytosolic β-catenin to 
the nucleus [118]. Additionally, C1q is enhanced in the 
microglia and the serum of the PGRN KO mice, which 
is associated with a neurodegenerative phenotype in the 
aged mice [119]. The PGRN deficiency further acceler-
ates age-associated cardiac aging, cardiac dysfunction, 
and hypertrophy, probably through the C1q-induced 
β-catenin, which increases and is associated with the 

age-related cardiac abnormality. The PGRN KO mouse 
hearts also exhibit greater lipofuscin accumulation [120]. 
PGRN is closely related to the other types of dementia, 
like Alzheimer’s disease [114, 115, 121]. Moreover, the 
PGRN deficiency accelerates the age-associated phe-
notype observed in neurons [122]. The loss of PGRN 
additionally accelerates intervertebral disc degenera-
tion in aged mice [123]. Increasing age has been further 
proposed to be one of the main risk factors for cardiac 
hypertrophy [109, 124, 125]. The PGRN KO mice have 
exhibited age-dependent cardiac hypertrophy and faster 
aging in comparison to the wild-type ones [122, 126]. 
As well, abnormal lipofuscin accumulation has been 
observed in the heart of aged PGRN KO mice. Despite 
being short-living cells, some postmitotic cells, like neu-
rons, cardiomyocytes, and skeletal muscle cells, fail to 
degrade intracellular lipofuscin, which leads to its mass 
accumulation [127]. In fact, lipofuscin can be detected in 
some neurons in the brains of young children, though it 
gradually increases with age [128]. Even though the con-
tent of lipofuscin increases with the rise in the weight of 
the heart [129, 130], there is no information on the asso-
ciation between lipofuscin accumulation and cardiac 
hypertrophy. C1q also binds to the Wnt receptor Fzd, 
which cleaves the LDL receptor-related protein 6 (LRP6) 
and promotes age-associated phenotypes in the skeletal 
muscle [118]. The age-associated activation of β-catenin 
accordingly shows the C1q binding to the extracellular 
cysteine-rich domain of Fzd. The higher activation of 
β-catenin in the PGRN-deleted cardiomyocytes is fur-
ther related to the C1q induction. The exogenous PGRN 
administration also inhibits the C1q binding to Fzd-1 as 
well as the subsequent β-catenin activation dose-depend-
ently [120]. Hence, PGRN is critical to preventing serum 
C1q from binding to Fzd-1 in the target cells, so further 
research must be done to clarify if PGRN directly com-
petes with C1q for binding to Fzd-1. Furthermore, aged 
PGRN KO mice had shown age-associated cardiac phe-
notypes, like fibrosis and hypertrophy, which had reduced 
fraction shortening [120]. The transverse aortic constric-
tion (TAC)-operated PGRN KO mice also have a greater 
rate of mortality with hypertrophy and exacerbated car-
diac dysfunctions. On the other hand, the cardiac aging 
phenotype had not largely differed between PGRN KO 
mice and 6-month old wild-type ones, but there was 
further distinction in the PGRN KO mice than the wild-
type ones at 18 months, that is, once the C1q expression 
significantly increased. These observations suggest that 
the permanent activation of C1q is partially related to 
the aging phenotypes caused by the loss of PGRN [120]. 
Suppressing complementary activation through deleting 
the C1qa gene may thus significantly enhance the sur-
vival rate, and decline neuro-degenerative phenotypes in 
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the PGRN KO mice [119]. Drug targeting, using the C1 
esterase inhibitor (C1-INH) reduced cardiac hypertrophy 
in an animal model. Moreover, C1-INH attenuates the 
β-catenin activation in the aged KO mice, which matches 
the results, stating the fact that C1q plays a central role in 
the regulation of the β-catenin pathways [120]. Besides, 
C1-INH ameliorates angiotensin II-induced arterial 
remodeling [131]. Therefore, this research line needs 
more investigations to move toward clinical translation.

PGRN as lysosomal regulatiors of inflammation
Lysosomes are a single ubiquitous membrane-enclosed 
intracellular organelle with an acidic pH, present in all 
eukaryotic cells, that contains a large number of hydro-
lytic enzymes such as proteases, nucleases, and phos-
phatases that are able to degrade extra- and intracellular 
components [132]. Lysosomes are thus recognized as the 
key organelles for cellular clearance and are involved in 
many cellular processes to maintain cellular homeosta-
sis [133]. Although the initial characterization of PGRN 
function was primarily focused on its role in extracellu-
lar signaling as a secreted protein, more recent studies 
have revealed the critical roles of PGRN in regulating 
lysosomal function, including proteolysis and lipid deg-
radation, consistent with its localization [134]. In the case 
of CVD, many studies have further demonstrated that 
abnormal autophagy, including autophagic flux, can have 
a wide variety of pathogenic actions in the pathogenesis 
of this disease [135]. Another important aspect to con-
sider is the role played by lysosomes in the activation of 
the NOD-, LRR- and pyrin domain-containing protein 3 
(NLRP3) inflammasome, which can result in the matura-
tion and release of IL-1β, a cytokine with a fundamental 
role in establishing and driving the pathogenesis of ath-
erosclerosis [136]. Autophagy inhibition and the associ-
ated lysosome dysfunction also induce the formation and 
activation of NLRP3 inflammasomes. Lysosomes play a 
decisive role in cytokine release during atherosclerosis 
progression. Particularly, secretory lysosomes facilitate 
the release and degradation of cytokines that require 
non-conventional secretion [137]. The deficiency of the 
lysosomal-associated membrane protein-2 (LAMP-2) 
gene, which encodes for a lysosomal membrane pro-
tein on chromosome X, can accordingly cause Danon 
disease, which often leads to cardiomyopathy and heart 
failure. In human cardiomyocytes, autophagosome-lys-
osomal fusion also requires LAMP-2 isoform B [138]. 
Although PGRN has been reported to play signaling roles 
as a secreted protein, growing evidence indicates that 
it is a key regulator of lysosomal degradative processes 
via cathepsin and glucocerebrosidase regulation, par-
ticularly in the brain [134]. PGRN has also been identi-
fied as a CatD chaperone, suggesting a role in lysosomal 

proteolysis, which stimulates CatD activity in cell-free 
assays due to physical, stabilizing interactions [139–141]. 
More recent studies have thus suggested that PGRN and 
partial-length, multi-GRN peptides bind to immature 
CatD, facilitating its conversion into mature types at 
acidic pH [142, 143]. PGRN may also be physiologically 
involved in lysosomal lipid catabolism [144]. Aside from 
the role of PGRN in lysosomal proteolysis and lipoly-
sis, there are clues that it may play broader roles in the 
endolysosomal compartment [145]. Sortilin 1 (SORT1) is 
also a multiligand type I transmembrane protein belong-
ing to the vacuolar protein sorting family that is located 
both on the cell surface and in endolysosomal com-
partments [146]. The function of the SORT1 receptor 
is mainly related to the transport of proteins of various 
types from the cell surface to the intracellular compart-
ments, such as lysosomes and endosomes, via the Golgi 
apparatus in neuronal and non-neuronal cells [146, 
147]. In this case, after the binding of PGRN to SORT1, 
the entire resulting ligand-receptor complex undergoes 
endocytosis from the extracellular space, which is associ-
ated with the further delivery of PGRN to the lysosome, 
which may also take place in a mechanism independ-
ent of SORT1 through interaction with prosaposin [148, 
149]. It can also be assumed that the free C-terminal end 
of cleaved PGRN mediated the interaction with SORT1. 
The regulation occurring within this signal axis can in 
this case be seen as an endogenous mechanism of regu-
lation of the extracellular level of PGRN and turnover at 
the level of endocytosis/exocytosis phenomena, which 
has been demonstrated both during in vitro and in vivo 
tests [148, 150].

Potential role of PGRN in inflammation 
and SARS‑CoV‑2 (COVID‑19)
It was observed that patients with COVID-19 were facing 
significant risks for 20 types of cardiovascular diseases, 
including myocardial infarction 1 year after infection 
[151]. Studies have further shown that cardiac com-
plications can occur even in people with a mild form 
of the disease. However, cardiac complications had a 
higher frequency in a group hospitalized in the inten-
sive care unit (ICU) due to severe disease forms [152]. 
Considering the widespread global outbreak of the dis-
ease, physicians wonder whether this pandemic causes 
cardiovascular complications. A study of over 500.000 
patients with COVID-19 also revealed a 167% higher risk 
of thrombosis in the cases with SARS-COV-2 within 2 
weeks of infection than in influenza [153]. The effect of 
SARS-COV-2 on the heart could be further related to 
angiotensin-converting enzyme 2, wherein the virus was 
employed for entering the cells. COVID-19 is thus con-
sidered a disorder with severe and systemic inflammation 
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that leads to phenomena, such as acute respiratory dis-
tress syndrome (ARDS) and the failure of vital organs, 
including the heart [154, 155]. Studies have further dem-
onstrated that recruiting neutrophils and monocytes in 
COVID-19 to various organs results in injuries and dis-
orders. On the other hand, the destructive role of Th17 
in developing this phenomenon has been established 
[156]. SARS-CoV-2 raises strong inflammatory responses 
including cytokine storm, initiating from the lungs and 
spreading to the heart, which induces viral myocardi-
tis and elevated troponin levels in the bloodstream, and 
leads to fatal heart failure. Indeed, inflammation, particu-
larly the multisystem inflammatory syndrome in children 
(MIS-C), has been currently established as the cause of 
heart failure. COVID-19 has been further reported to 
augment the risk of cardiac shock, arrhythmia, and some-
times sudden death in patients with CVDs [157]. Fur-
thermore, drug interactions with the targeted therapies 
for COVID-19 may predispose the cases with underly-
ing CVD to a higher risk of cardiomyopathy, arrhythmias 
and sudden death. Vascular inflammation and cardiac 
damage also occurs in 20-30% of hospitalized COVID-19 
patients and account for 40% of deaths. Cytokine release 
syndrome (CRS) may further lead to elevated cytokine 
levels, and dysfunctions in the T lymphocyte along with 
lymphocytopenia at the early stages, and increase signifi-
cantly at the later stages of COVID-19. This is typically 
associated with increased levels of CRP, cytokines such 
as IL-2 and IL-6, and cardiac natriuretic peptides [154]. 
These factors may all give rise to heart dysfunction or 
inflammation due to the growth in the atrial natriuretic 
factor and high serum ferritin levels, which may result 
in arrhythmia, myocardial dysfunction, heart failure, or 
stress cardiomyopathy. In some patients with COVID-19, 
the immune cells also cause inflammation by releasing 
cytokines and chemokines that can influence coagulation 
and clotting through multiple pathways. For example, the 
activation of the complement system after viral entry can 
lead to thrombosis [158]. Therefore, considering the sim-
ilarity of the immunopathogenesis of heart failure follow-
ing COVID-19 with other cases reviewed in this article, 
PGRN, as a regulator of inflammatory responses affecting 
the critical immunological events involved in the occur-
rence of damage caused by inflammation, can be pro-
posed as a therapeutic and diagnostic target in the type of 
CVDs caused by COVID-19.

Conclusion
The presence of immunological cells and mediators 
as well as their roles in maintaining proper cardiac 
functions have thus far been clarified. In this regard, 
dysregulated immune responses and uncontrolled 
inflammation are the key factors in developing various 

types of CVDs. As a regulatory and mainly anti-inflam-
matory factor whose role has been shown in many and 
autoimmune diseases, PGRN can be thus considered as 
a missing link in the chain of the events of CVD immu-
nopathogenesis. PGRN in the heart can thus essen-
tially contribute to the retention of homeostasis against 
aging, and the overload of blood pressure. The methods 
for enhancing PGRN expression accordingly show new 
therapeutic prospects for preventing cardiac dysfunc-
tion and hypertrophy. The PGRN deficiency further 
accelerates age-associated cardiac aging, hypertrophy, 
and dysfunction through C1q-induced β-catenin. The 
administration of PGRN accordingly protects against 
acute myocardial ischemia. It also improves cardiac 
function, possibly indicating the essential therapeutic 
and physiological function of PGRN in ischemic heart 
disease. However, there is a dire need for future clinical 
studies to identify the PGRN contribution to obesity-
related ischemic heart disease. The PGRN therapy in a 
mouse model of acute myocardial ischemia-reperfusion 
injury had thus led to major improvements in cardiac 
function. PGRN also reverses the ischemia impact on 
cardiac function and reduces cellular damage. Another 
remarkable conclusion is the effectiveness of rPGRN 
in treating the mice with hyperhomocysteinemia. The 
recombinant PGRN administration also decelerates the 
development of diseases and consequently ameliorates 
the hyperhomocysteinemia-induced cardiac damage, 
suggesting the necessity of PGRN for cardioprotection 
as a novel treatment prospect to deal with hyperho-
mocysteinemia patients. The GRN also speeds up the 
calcification of VICs by activating NF-κB, Akt, as well 
as Smad1/5/8 pathways. In addition, PGRN may pro-
tect against myocardial ischemia-reperfusion injury by 
modulating the post-ischemic inflammatory response. 
The increased expression of PGRN following the MI 
induction is further related to its protective contribu-
tions against myocardial ischemia-reperfusion injury. 
Thus, the impact of PGRN under MI conditions must 
be understood. Finally, the dynamic changes in the 
PGRN localization and expression after MI bring the 
treatment potentials for myocardial ischemia-reperfu-
sion injury.
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