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Downregulation of lncRNA-PVT1
participates in the development of
progressive chronic kidney disease among
patients with congestive heart failure
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Abstract

Background: Congestive heart failure (CHF) is a major cause of the development of progressive chronic kidney
disease (CKD), while the mechanism is still unknown. LncRNA PVT1 contributes to kidney injury. This study aimed to
explore the role of PVT1 in the development of CKD in CHF patients.

Methods: Expression of PVT1 in plasma samples of CHF patients with and without CKD was determined by RT-
qPCR. The diagnostic value of plasma PVT1 for CKD was evaluated by ROC curve analysis. The predictive value of
PVT1 for the development of CKD in CHF patients was analyzed by a 2-year follow-up study. Changes in PVT1
expression in CKD patients during treatment were analyzed by RT-qPCR and reflected by heatmaps.

Results: Plasma PVT1 was downregulated in CHF and further downregulated in CHF patients complicated with
progressive CKD. ROC curve analysis showed that plasma PVT1 levels could be used to distinguish CHF patients
complicated with CKD from CHF patients without CKD and healthy controls. During a 2-year follow-up, patients
with high CHF levels had a low incidence of progressive CKD among CHF patients. Moreover, with the treatment of
progressive CKD, plasma PVT1 was upregulated.

Conclusions: LncRNA-PVT1 downregulation may participate in the development of progressive CKD among
patients with CHF.
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Introduction
Congestive heart failure (CHF), also known as heart fail-
ure, is a common clinical disorder reflected by reduced
heart function and/or impaired heart structure [1]. It is
estimated that more than 6.5 million people in the US
are suffering from CHF, resulting in more than 30 bil-
lons of medical cost [2]. Patients with CHF usually show

dyspnea and fatigue at rest. Besides that, CHF is also
correlated with a high mortality rate even with active
treatment. About 10% of CHF patients will die of CHF
within 1 month after treatment, and the 5-year overall
survival rate is only about 50% [3, 4]. In CHF patients,
elevated central venous pressure may be transmitted to a
glomerular efferent arteriole, leading to reduced glom-
erular filtration rate (GFR) and glomerular filtration
pressure, which may cause the development of chronic
kidney disease (CKD) [5, 6]. Therefore, the development
of CDK contributes to the high mortality of CHF.
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CDK prevention and effective treatment in CHF pa-
tients are critical for improving the survival of CHF pa-
tients [5, 6]. However, the molecular mechanisms
linking CHF and CKD are unclear, limiting the develop-
ment of preventative and treatment approaches [7].
Without protein-coding capacity, lncRNAs participate in
CHF and CKD mainly by regulating related gene expres-
sion [8–10]. Compared to protein-coding genes,
lncRNAs are more spatially and temporally expressed
with more specific functions [11]. Therefore, lncRNAs
may be promising targets to understand the mechanism
that mediates CKD development in CHF. However, the
function of most lncRNAs in CDK and CHF remains
unclear. A recent study showed that lncRNA PVT1 par-
ticipates in LPS-induced septic acute kidney injury [12].
In addition, our preliminary microarray analyses revealed
altered PVT1 expression in both CHF patients with and
without CKD. Therefore, our study was performed to
explore the potential involvement of PVT1 in the devel-
opment of CKD in CHF.

Materials and methods
Patients and healthy controls
From June 2016 to June 2018, a total of 50 healthy con-
trols (28 males and 22 females), 100 CHF patients with
obvious complications (CHF group, 56 males and 44 fe-
males), and 50 CHF patients complicated with CKD
(CHF + CKD group, 28 males and 22 females) at Affili-
ated Hospital of Shaoxing College of Arts and Sciences
were included in the study. They were at the age of 46
to 68 years with a median of 57 years. All healthy con-
trols showed normal physiological functions in systemic
physiological exams. CKD was diagnosed based on urine
and blood tests. CHF was diagnosed based on the fluid
in the lungs on chest X-ray, heart size and/or blood flow
to the heart muscle on electrocardiogram, heart rate,
heart rhythm, and ventricle size. All participants signed
informed consent. The study was approved by the Ethics
Committee of our hospital.

Treatment and plasma preparations
The 50 patients in the CHF + CKD group were treated
by optimized dialysis, angiotensin-converting enzyme in-
hibitors, or fluid overload control according to patients’
disease conditions and health conditions. Prior to ther-
apy, fasting blood (2 ml) was extracted from all three
groups of patients. During treatment, fasting blood was
also extracted from CHF + CKD group at 1, 2, and 3
months after the treatment. All blood samples were
mixed with citrate at a ratio of 1:10 in centrifugation
tubes, followed by centrifugation at room temperature
for 20 min at 1200 g. The supernatant (plasma) was col-
lected and kept in liquid nitrogen.

Follow-up (2-year) of CHF group
To explore the predictive value of plasma PVT1 for
CKD development in CHF patients, the 100 CHF pa-
tients were followed up for 2 years. Patients who died
during the follow-up before the diagnosis of CKD were
excluded. Follow-up was performed in a monthly man-
ner through the outpatient visit.

RNA preparations
Total RNAs were extracted from all plasma samples
using RNAzol (Sigma-Aldrich) and treated with DNase I
(Invitrogen) for 2 h at 37 °C to remove genomic DNAs.
RNA integrity was analyzed on a 5% urea-PAGE gel and
Agilent 2100 Bioanalyzer. RNA purity was analyzed by
OD26/280 ratio. Samples with RNA integrity value
(RIN) higher than 9 and OD260/280 ratio around 2.0
were used in the subsequent experiments.

RT-qPCR assay
RNA samples with satisfactory quality were reverse tran-
scribed into cDNA using SS-RT-IV kits (Invitrogen). To
determine PVT1 expression, qPCRs were performed
using SYBR Green Master Mix (Bio-Rad) with 18S rRNA
as the internal control at conditions of denaturation at
95 °C for 1 min followed by 40 cycles of 10s at 95 °C and
55 s at 58 °C. Three technical replicates were included in
each experiment. The relative Ct values of PVT1 were
calculated as ΔCt = Ct (PVT1) – Ct (18S rRNA). The
sample with the biggest ΔCt value was set to value “1”,
and all other samples were normalized to this sample.
Primer sequences used in PCR were PVT1 forward 5′-
TGAGAACTGTCCTT ACGTGACC-3′ and reverse 5′-
AGAGCACCAAGACTGGCTCT-3′ and 18S rRNA for-
ward 5′-CTACCACATCCAAGGAAGC-3′ and reverse
5′-TTTTCGTCACTACCT CCCCG-3′.

Cardiomyocytes and treatment
Human AC16 cardiomyocytes (EMD Millipore, USA)
were cultured in DMEM supplemented with 1% penicil-
lin, 1% streptomycin, and 12% FBS at 37 °C in an incuba-
tor with 5% CO2. Cells were treated with 0, 1, 1, 2, and
5 μg/ ml LPS for 24 h prior to analyzing PVT1
expression.

Statistical analysis
PTV1 levels in plasma samples were expressed as mean
values of three technical replicates. PVT1 expression
levels during the treatment were represented by heat-
maps plotted using Heml 1.0 software. The 100 CHF pa-
tients were divided into high and low PVT1 level groups
(n = 50; cutoff value = the median PVT1 level in plasma
samples of CHF patients). CKD-free curves were plotted
and compared by log-rank test. P < 0.05 was considered
statistically significant.
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Results
Plasma PVT1 was downregulated in CHF and further
downregulated in CHF + CKD
PVT1 levels in plasma samples collected from the control
group (n = 50), CHF group (n = 100), and CHF + CKD
group (n = 50) were measured by RT-qPCR. Plasma PVT1
levels were significantly lower in CHF (1.65-fold) and
CHF + CKD (2.22-fold) groups than in the control group
(p < 0.01). Moreover, PVT1 levels were also significantly
lower in the CHF + CKD group (1.33-fold) than in the
CHF group (Fig. 1, p < 0.01). Therefore, altered PVT1 ex-
pression may participate in CHF and CKD.

Altered plasma PVT1 levels separated CHF + CKD patients
from CHF patients and healthy controls
ROC curve analysis was performed to analyze the diag-
nostic value of plasma PVT1 for CKD. The area under
the curve (AUC) was 0.9744 when patients with CHF +
CKD and and the controls were considered the true
positive cases and the true negative cases, respectively,
with a 95% confidence interval of 0.9512 to 0.9976 and
standard error of 0.01181 (Fig. 2A, p < 0.0001). When
CHF patients were considered the true negative cases,
AUC was 0.7821 with a 95% confidence interval of
0.7084 to 0.8558 and standard error of 0.03758 (Fig. 2B,
p < 0.0001). Therefore, altered PVT1 expression in
plasma may assist the diagnosis of CKD in CHF patients.

Predictive value of plasma PVT1 for CKD in CHF patients
The 100 CHF patients were followed up for 2 years to
analyze the predictive value of plasma PVT1 for CKD.
CKD-free curves were plotted for both high and low
PVT1 level groups and compared using the log-rank
test (Fig.3). Compared to the high PVT1 level group, the
low PVT1 level group showed significantly higher inci-
dence rate of CKD.

Plasma PVT1 levels increased in the CHF + CKD group
during the follow-up
Plasma PVT1 levels in the CHF + CKD group were mea-
sured prior to the treatment and at 1, 2, and 3months
after the beginning of the treatment. Heatmaps were
plotted using Heml 1.0 software to reflect the changes in
plasma PVT1 levels. It was observed that plasma PVT1
levels increased during the treatment (Fig. 4). Compared
to the pre-treatment PVT1 levels, 1.8-, 2.2-, and 2.9-fold
increases were observed at 1, 2, and 3 months after the
beginning of the treatment, respectively.

LPS treatment decreased PVT1 expression in
cardiomyocytes
AC16 cells were treated with 0.1, 1, 2, and 5 μg/ml LPS
for 24 h, and PVT1 expression levels were determined
using RT-qPCRs after RNA isolations. It was observed

Fig. 1 Plasma PVT1 was downregulated in CHF and further downregulated in CHF + CKD. PVT1 levels in plasma samples collected from the
control group (n = 50), CHF group (n = 100), and CHF + CKD group (n = 50) were measured by RT-qPCR. PTV1 expression levels in plasma samples
from the three groups of patients were expressed as the mean values of three technical replicates. Data were compared by unpaired t test.
** p < 0.01
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that LPS treatment decreased PVT1 expression in a
dose-dependent manner (Fig. 5, p < 0.05).

Discussion
This study mainly explored the differential expression of
PVT1 in CHF and CKD and analyzed the diagnostic
value of PVT1 for the development of CKD in patients
with CHF. We found that PVT1 was downregulated in
both CHF and CKD, and altered PTV1 expression may
have diagnostic and prognostic values for CKD.

It has been reported that PVT1 is upregulated in LPS-
induced septic acute kidney in mice model and pro-
motes disease progression by regulating JNK/NF-κB and
TNFα pathways [13]. Curcumin could protect LPS-
induced septic acute kidney injury by suppressing PVT1
expression [12]. Moreover, PVT1 knockdown targets
miR124 to improve vancomycin-induced acute kidney
injury through the activation of NF-κB signaling [14].
Therefore, PVT1 can promote the development of LPS-
and vancomycin-induced kidney injury. Interestingly,
our study showed that PVT1 was downregulated in CHF

Fig. 2 Altered PVT1 plasma levels separated CHF + CKD patients from CHF patients and healthy controls. ROC curve analysis was performed to
analyze the diagnostic value of plasma PVT1 for CKD. In ROC curve analysis, patients with CHF + CKD were considered as the true positive cases,
and healthy controls (A) or CHF patients (B) were considered as the true negative cases

Fig. 3 Follow-up analysis of CHF group revealed the predictive value of plasma PVT1 for CKD in CHF patients. The 100 CHF patients were divided
into high and low PVT1 level groups (n = 50; cutoff value = the median level of PVT1 in plasma samples of CHF patients). CKD-free curves were
plotted and compared by log-rank test
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and CKD, suggesting the different role of PVT1 in CHF-
induced CKD. However, the functions of PVT1 in CHF-
induced CKD remain to be further explored.
The development of CKD is a major cause of death in

CHF patients [5, 6]. Therefore, it is important to accur-
ately diagnose and predict CKD among CHF patients. In
our study, we showed that altered plasma PVT1 expres-
sion separated CHF + CKD patients from both CHF pa-
tients and healthy controls. Moreover, during the follow-
up study, low PVT1 levels were found to be closely cor-
related with a high incidence rate of CKD among CHF

patients. Therefore, altered PVT1 expression in CHF pa-
tients may predict the occurrence of CKD.
During the treatment, we observed continuous PVT1

increased plasma levels in CHF + CKD patients. The in-
creased PVT1 expression may promote the recovery of
patients. In addition, altered PVT1 expression may also
be used to monitor the treatment outcomes. It is known
that LPS could induce inflammation to promote CHD
[15] and regulate PVT1 expression [12]. We showed that
LPS treatment decreased PVT1 expression in cardio-
myocytes. Therefore, altered PVT1 expression in CHD is

Fig. 4 Plasma PVT1 levels increased in CHF + CKD group during the follow-up. Plasma PVT1 levels in CHF + CKD group were measured prior to
the treatment, and at 1, 2, and 3months after the beginning of the treatment. Heatmaps were plotted using Heml 1.0 software to reflect the
changes in plasma PVT1 levels

Fig. 5 LPS treatment decreased PVT1 expression in cardiomyocytes. AC16 cells were treated with 0.1, 1, 2, and 5 μg/ml LPS for 24 h, followed by
RNA isolations and RT-qPCRs to determine the expression of PVT1. * p < 0.05
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likely induced by LPS. However, our study is limited by
the small sample size. In addition, the function of PVT1
in CHF-induced CKD and the molecular mechanism re-
main unclear. Our future studies will explore the pos-
sible functions and mechanisms.

Conclusion
PVT1 is downregulated in CHF-induced CKD, and al-
tered PVT1 expression has diagnostic and predictive
values for the development of CKD in CHF patients.
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