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Abstract

Ovarian carcinoma is the deadliest type of gynecological cancer. The unique tumor microenvironment enables specific
and efficient metastasis, weakens immunological monitoring, and mediates drug resistance. Tumor associated
macrophages (TAMs) are a crucial part of the TME and are involved in various aspects of tumor behavior.
Lysophosphatidic acid (LPA) is elevated in the blood of ovarian carcinoma patients, as well as in the tumor tissues and
ascites, which make it a useful biomarker and a potential therapeutic target. Recent studies have shown that LPA
transforms monocytes into macrophages and regulates the formation of macrophages through the AKT/mTOR
pathway, and PPAR γ is a major regulator of LPA-derived macrophages. In addition, TAMs synthesize and secrete LPA
and express LPA receptor (LPAR) on the surface. With these data in mind, we hypothesize that LPA can convert
monocytes directly into TAMs in the microenvironment of ovarian cancer. LPA may mediate TAM formation by
activating the PI3K/AKT/mTOR signaling pathway through LPAR on the cell surface, which may also affect the function
of PPAR γ, leading to increased LPA production by TAMs. Thus, LPA and TAMs form a vicious circle that affects the
malignant behavior of ovarian cancer.
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Introduction
Ovarian carcinoma is the most common cause of mortal-
ity from gynecological tumors and the 5th leading cause
of cancer death in women [1]. The five-year survival rate
is only approximately 46.5% [2]. Several characteristics of
ovarian cancer are related to its lethality, including the ex-
foliation of tumor cells, metastasis and diffusion through
peritoneal fluid, and tumor promotion and immunosup-
pression by the tumor microenvironment (TME) [3]. As

an important component of the TME, tumor associated
macrophages (TAMs) make a crucial part in ovarian can-
cer progression, chemotherapeutic resistance, immuno-
suppression and prognosis. At present, there have been
some reports on immunotherapy targeting TAMs [4–7].

Roles of TAMs in ovarian cancer
The main characteristic of ovarian cancer is early metastasis
through peritoneal fluid. Ascites contain a large population
of TAMs [8–10], forming a unique microenvironment [11].
Macrophages can inhibit apoptosis, promote tumor inva-
sion and proliferation, suppress antitumor immune cells
and foster tumor angiogenesis [12, 13]. TAMs in the ovar-
ian cancer are generated from monocytes and resident
macrophages. Research has shown that ovarian cancer
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TAMs are similar to monocyte-derived macrophages [14],
which adopt the M2 phenotype. TAMs promote tumor
progression, chemotherapeutic resistance and immunosup-
pression [11, 12, 15–17]. CD163 and CD206/MRC1, which
are strongly expressed on TAMs, are receptors for im-
munosuppressive molecules and predict the early recur-
rence of ovarian cancer [18–20]. CD163 and CD206
mRNA expression is also associated with IL-10 levels in
ascites, which indicate a shorter relapse free survival (RFS)
in patients with ovarian cancer [21]. The prognosis and
survival of ovarian cancer patients are related to the pres-
ence of TAMs. Several adverse clinical markers are highly
expressed by ovarian cancer TAMs, including CD163,
Procollagen C-endopeptidase enhancer 2 (PCOLCE2), IL-
6 and IL-10 [22]. TAMs are the primary secretors of most
collagens and the main source of most protease inhibitors
and make an important part in the synthesis of extracellu-
lar matrix (ECM) proteins [11]. Macrophages play a cru-
cial role in ECM remodeling and the invasion of ovarian
cancer [14, 20, 23]. TAMs can synthesize chemokine lig-
and 5 (CCL5), chemokine ligand 8 (CXCL8), and select-
ively synthesize CCL18, CXCL2 and CXCL3, all of which
can attract monocytes/macrophages and promote tumor
progression [24].

Roles of LPA in ovarian cancer
Lysophosphatidic acid (LPA) was initially identified as a
ovarian cancer growth factor and was known as an ovarian
cancer activator [25, 26] and a potential marker of ovarian
cancer [27]. LPA can promote ascites formation and
tumorigenesis [28]. The raised levels of LPA in blood, tis-
sues and ascites make it a useful biomarker and a potential
therapeutic target in ovarian carcinoma [29]. LPA can
promote tumor survival and proliferation, cisplatin resist-
ance and increase the production of urokinase plasmino-
gen activator (uPA), additional LPA generation and
vascular endothelial growth factor (VEGF) in ovarian can-
cer. LPA can promote the production of protease and
neovascularization mediators, and reduce the apoptosis of
tumor cells [30], but has no obvious effect on normal
ovarian cells [31]; these roles of LPA are similar to those
of TAMs. The tissues and cells in the ovarian carcinoma
TME maybe the main source of the increased LPA. The
cells involved in LPA production include immune cells,
platelets, mesothelial cells and adipocytes [29]. The lead-
ing role of LPA in ovarian carcinoma is in cell invasion
and migration, and these effects are mainly induced by
LPA receptors (LPARs). LPARs are a group of G protein-
coupled receptors (GPCRs) for LPA that include LPAR1,
LPAR2, LPAR3, LPAR4, LPAR5 and LPAR6 [32–39].. Re-
cent studies showed that LPA is related to the formation
of ovarian carcinoma stem cells and enhances their malig-
nant behavior; these effects are mediated by LPAR1 [40,
41], which interacts with CD14 [42], a monocyte

differentiation antigen which is highly expressed on the
cell membrane surface of monocytes/macrophages.

The hypothesis
The interplay between LPA and tumor associated mac-
rophages plays a critical role in driving ovarian cancer
malignancy and offers a potential target for therapy. We
propose that this hypothesis is supported by three
points, as showed in the Fig. 1:

1. LPA transforms monocytes directly into TAMs in
the ovarian cancer TME.

2. LPA regulates TAM formation by activating the
PI3K/AKT/mTOR signaling pathway through LPAR
on the cell surface, which may also affect the
function of peroxisome proliferators-activated re-
ceptor gamma (PPAR γ).

3. TAMs produce more LPA. Together, LPA and
TAMs form a vicious circle that affects the
malignant behavior of ovarian cancer.

Evaluation of the hypothesis
LPA and TAMs play similar roles
LPA regulates a variety of tumor-promoting factors and
inflammatory factors in epithelial ovarian cancer, includ-
ing IL-6, IL-8, VEGF, matrix metallopeptidases (MMPs),
CXCL12, cytochrome c oxidase subunit 2 (COX2), uPA,
cyclin D1, CXCL1 [43]. Macrophages produce many fac-
tors that contribute to tumor growth, including VEGF, IL-
1, IL-6, nuclear factor-kappa B (NF-κB), tumor necrosis
factor-alpha (TNF-α) and macrophage colony-stimulating
factor (M-CSF) [44, 45]. LPA enhances the expression and
secretion of IL-13 in T cells [46]. M2 macrophages can be
activated by IL-13 or IL-4 [47]. The macrophage derived
phospholipase PLA2G7 can produce extra-cellular LPA,
which participate in the progress of ovarian carcinoma,
and is related to the early recurrence of ovarian cancer
[21, 48]. LPA helps cancer cells avoid the immune system
by improving the chemotaxis of Th2 cells [49] and inhibit-
ing the activation of CD8+ T cells [50]. M2 macrophages
have poor antigen-presenting ability, participate in the
Th2 reaction, inhibit Th1 adaptive immunity, and pro-
mote tumor progression [51, 52].
TAMs express high levels of tumor growth factors and

cytokines, such as CCL18, KITLGG, semaphorin-6B,
S100 calcium-binding protein B (S100B) and VEGFB.
Furthermore, TAMs preferentially express cytokines and
growth factors, such as CCL18, that promote tumor pro-
gression, growth and recurrence in ovarian cancer [11].
The levels of CCL18 in cancer tissue are related to me-
tastasis and the shorter overall survival of patients with
ovarian cancer, which seems to be associated with the
increase in the mTOR Complex 2 (mTORC2) signaling
pathway [53]. LPARs (LPAR1–6) are GPCRs and the
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LPA signal is mainly induced by these six GPCRs, which
activate extracellular signal-regulated kinases 1/2 (ERK1/2),
phosphoinositide 3-kinase (PI3K), mammalian target of
rapamycin (mTOR), Ca2+ mobilization, RAC, RAS and
Rho, and stimulate ovarian cancer cell survival and migra-
tion [54, 55]. Therefore, we conjecture that LPA is involved
in the functions of TAMs, perhaps in a manner related to
the PI3K/AKT/mTOR signaling pathway (Fig. 1).

Relationship between TAMs and LPA
The functional annotation of TAM genes in the ovarian
cancer TME most frequently reveals the GPCRs pathway.
TAMs participate in the formation of lipids and play a
crucial role in the synthesis of LPA. Additionally, macro-
phages and T cells express LPAR5 and LPAR6 [56].
LPAR6 is the main LPA receptor expressed on ovarian
cancer TAMs [11]. In ovarian cancer, LPA is mainly gen-
erated by TAMs, and the role of LPA in macrophage
polarization was previously reported [57]. Furthermore, it
is TAMs, not tumor cells, which produce LPA in fat-free
medium. LPA-induced genes in macrophages are related
to cell movement and migration in ovarian cancer micro-
environment [56]. Accordingly, ovarian cancer TAMs may
activate LPAR and the relevant signaling pathway by syn-
thesizing and secreting LPA, thus promoting the invasion
and metastasis of ovarian cancer (Fig. 1).
LPA regulates macrophage polarization [11]. Recent re-

search has shown that LPA can convert human monocytes
into macrophages [57]. LPA-stimulated macrophages
express high levels of CD68 and levels of CD14, CD64,
CD68 and CD206 comparable to those expressed by mac-
rophages stimulated with human M-CSF. AKT/mTOR sig-
naling stimulated by LPA makes a significant part in the

development of murine macrophages, and PPAR γ is an
important transcriptional regulator of LPA-induced macro-
phage development [57]. Existing data prompt the hypoth-
esis that LPA may activate the PI3K/AKT/mTOR pathway
through LPAR to directly induce the polarization of mono-
cytes/macrophages to TAMs in ovarian cancer. This mech-
anism needs to be better understood in future studies
before the application of clinical immunotherapy in ovarian
cancer (Fig. 1).

Conclusion
In ovarian carcinoma, elevated levels of LPA in blood,
tissue and ascites lead to the conversion of monocytes
into ovarian cancer TAMs in the TME. The molecular
mechanism may involve LPA binding to LPAR, which
activates the PI3K/AKT/mTOR pathway and affects the
function of PPAR γ, resulting in a cascade of reactions
and changes. Finally, LPA produced by TAMs and
TAMs themselves form a vicious circle that affects the
metastasis and invasion of ovarian carcinoma. Further
study of the interaction between TAMs and LPA in
ovarian cancer will bring about a better further under-
standing of ovarian cancer pathogeny and will provide
theoretical evidence for the treatment and early diagno-
sis of ovarian carcinoma. This vicious circle is a potential
target of immunomodulatory therapy for ovarian cancer.
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Fig. 1 The possible molecular mechanism of LPA induced monocyte polarization to TAM in ovarian cancer TME
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