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Abstract

Background: Obesity is a risk factor for chronic kidney disease (CKD). While the exact mechanisms remain unclear,
inflammation may be a consequence of obesity that directly impacts the kidneys. The aim of this study was to
examine the inflammatory status of the kidneys and potential ongoing renal damage, i.e., tubular damage and
fibrosis after long-term obesity maintained through persistent consumption of a high-fat diet (HFD).

Results: Twenty-four-week-old male Long-Evans (LEV) rats were continuously fed a control diet (CD) or HFD for 51
weeks. The mean body weight was higher in HFD-fed rats than in control diet-fed rats and markedly elevated
during the last 24 weeks. Blood analyses revealed no substantial alterations in renal functional parameters by HFD
consumption but a substantial increase in creatine kinase, a muscle loss marker. Magnetic resonance imaging (MRI)
was utilized to quantify rat quadriceps muscle mass. The data showed that HFD-induced obesity in LEV rats was
accompanied by minor decreases in muscle mass and strength at 75 weeks of age. Rat kidney inflammatory status
was evaluated using histological and immunohistological techniques. The number of foci with immune cell
infiltrates and infiltrating monocytes/macrophages was significantly increased in HFD-fed rat kidneys at week 75.
Renal fibrosis parameters, including glomerulosclerosis and tubular damage, were also markedly increased in renal
tissues from HFD-fed rats compared to the controls. The significant increase in tubular protein casts in HFD-fed rat
tissues indicated that renal function was already disturbed. Rat kidney inflammatory status was further evaluated
using the simultaneous profiling of twenty-two inflammatory markers in kidney tissue extracts. Consistently, MCP-1
and eotaxin (CCL11) levels were elevated in obese LEV rat kidneys.

Conclusions: Compared to CD-fed rats, HFD-fed obese LEV rats show significant damage of renal structures with
aging. These subtle changes may sensitize the kidneys to the development of progressive CKD.
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Background

Obesity is an important health threat that is associated
with cardiovascular morbidity and loss of skeletal
muscle, known as sarcopenia. Clinical studies have also
suggested a possible link between measures of obesity
and both the development and progression of chronic
kidney disease (CKD) [1, 2]. CKD is the common
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endpoint of most renal diseases and has emerged as a
worldwide public health issue [3]. The underlying patho-
logic process of CKD is renal fibrosis associated with un-
remitting renal inflammation. Renal damage and
inflammation often start in the glomeruli and then
spread to the tubulointerstitium [4]. The suggested
mechanisms causing this spreading include proinflam-
matory cytokines from inflamed glomeruli that might
perfuse tubulointerstitial capillaries and cause inflamma-
tion or abnormal amounts of protein reabsorbed from
the glomerular filtrate, potentially inducing stress re-
sponses in tubular epithelial cells [5]. The resulting
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inflammatory processes are characterized by tubulointer-
stitial mononuclear cell infiltrates contributing to immu-
nopathology and progressive tissue remodeling, such as
the infiltration of activated T cells that produce proin-
flammatory cytokines [6]. As a result, tubular atrophy,
accumulation of interstitial myofibroblasts and develop-
ment of interstitial scarring lead to the replacement of
functional nephrons by fibrotic tissue [7].

In general, the associations between obesity and im-
paired renal outcomes persist even after adjustments for
possible cardiovascular and metabolic effects, suggesting
that obesity independently affects kidney function [8].
Notably, controlled animal studies revealed that a few
weeks of rapid weight gain leads to structural changes in
the kidneys, including enlargement of Bowman’s space,
increased glomerular cell proliferation, thicker mesangial
matrix and basement membranes [9]. These early renal
changes occurred with no evidence for initial renal mal-
function; however, if progressive, they could eventually
impact the glomerular lumen, reduce the filtration sur-
face area and lead to kidney injury. This slowly develop-
ing vicious cycle may be accelerated in the setting of
metabolic derangements induced by obesity, such as in-
flammation or oxidative stress.

Both the extent and dynamics of tissue inflammation
are highly regulated by chemokines, a family of approxi-
mately 50 small cytokines that induce directed chemo-
taxis in responsive cells [10]. In the kidney, the
chemokine MCP-1 (CCL2) was shown to be an import-
ant player in renal inflammation that drives macrophage
tissue infiltration by binding to its receptor CCR2,
expressed mainly on monocytes and macrophages [11,
12]. Eotaxin (CCL11) is a potent eosinophil chemokine;
however, little is known about its role in renal inflamma-
tion. Earlier studies reported that the specific expression
of eotaxin in human kidney tissue may play a crucial
role in renal interstitial eosinophilia [13].

The aim of our study was to investigate the effects of a
long-term high-fat diet (HFD) on renal inflammation in
a rat model that accurately reflects the conditions lead-
ing to the current epidemic of human obesity resulting
from the industrialization of food systems. Here, we
show the HFD-induced inflammatory profile of the kid-
neys from male Long Evans (LEV) rats, representing a
model of obesity [14—16].

Results

Long-term HFD leads to obesity and impairment of
muscle function in aging rats

To investigate the effect of long-term HFD in aging LEV
rats, we measured food intake and body weight of eight
HFD-fed and eight CD-fed male rats between 23 and 75
weeks of age. Food intake was almost equal in both
groups but declined slightly with increasing age (Fig. 1a).
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The average body weight in the HFD group was 14%
(p<0.01) higher than that in the CD group throughout
the entire study. At the end of the study, the body
weight difference between the groups wasl8% (p<
0.001), indicating obesity in the HFD-fed rats (Fig. 1b).
Fasting blood glucose, urea and total protein concentra-
tions were similar in all animals, but the levels of serum
LDL, HDL, and triglycerides were increased in obese an-
imals compared to those in the control animals (Table 1)
. Creatine kinase levels were also significantly increased
in obese animals. This enzyme plays a pivotal role in cel-
lular energy homeostasis, particularly in tissues with
highly dynamic energy demands such as muscles [17].
Therefore, we assessed different skeletal muscle parame-
ters. The mean grip strength of the HFD group was sig-
nificantly lower than that of the CD control group (Fig.
1c). MRI-based examination of the musculus vastus
lateralis cross-sectional area showed a slight but signifi-
cant decrease in the relative cross-sectional area in the
HED group, which was consistent with the results from
the grip strength test (Fig. 1d, left panel). A postmortem
histological analysis of the musculus vastus lateralis re-
vealed almost equal numbers of muscle fibers in both
groups (Fig. 1d, right panel).

Long-term HFD leads to damage, inflammation and
fibrosis in the kidneys of aging rats

To investigate the potential consequences of HFD-
induced long-term obesity on kidney damage, inflamma-
tion and fibrosis, we first performed comprehensive ana-
lyses of PAS-stained renal sections (Fig. 2a). In the
kidneys of 75-week-old rats with continuous HFD con-
sumption, we detected a significant increase in tubuloin-
terstitial fibrosis (Fig. 2a and d), glomerulosclerosis (Fig.
2a and e), general tubular damage (Fig. 2a and f) and the
number of focal immune infiltrates (Fig. 2a and i).
Quantification of the immunohistochemical staining of
renal tissues for deposition of the extracellular matrix
protein collagen type III and for the consistent tubuloin-
terstitial expression of aSMA, a marker of profibrotic,
activated myofibroblasts, yielded values tending to be in-
creased in HFD-fed rats compared to those in CD-fed
animals (Fig. 2c, g and h). Following quantification of
immunohistochemical data, the kidneys of HFD-fed rats
were further characterized by a significantly increased
number of infiltrating monocytes/macrophages com-
pared to those of CD-fed animals (Fig. 2b and j). Since
urine samples were no longer available, we assessed a
surrogate marker for proteinuria, the area of tubular
protein casts in PAS-stained sections of each kidney. We
observed a significant (4.6-fold) increase in tubular pro-
tein casts in HFD-fed LEV rats compared to the control
group at week 75 (Fig. 2k).
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Fig. 1 Characteristics of male LEV rats in the study. Six-month-old LEV rats were divided into two groups of 8 animals each. One group was fed a
control diet (CD) (solid white bars or squares) and the other group was fed a high-fat diet (HFD (solid black bars or squares) continuously. (a)
Mean food uptake of LEV rats in the course of the study. (b) Weight increase of LEV rats in the course of the study. (c) Mean grip strength of 18-
month-old LEV rats. (d) The mean number of 200 + 10% fibers was measured using HE-stained sections of the musculus vastus lateralis in 18-
month-old LEV rats (right panel). The relative mean cross-sectional area (CSA) of the musculus vastus lateralis compared to body weight (left
panel). Statistical significance (HFD vs. CD, at each time point) was determined using two-way t-tests and is denoted by * for p <0.05, ** for p <

Long-term HFD elevates chemokine expression in the
kidneys of aging rats

Given that obesity-induced immune cell infiltration in
the kidneys may be a result of the active production of
chemokines, we used a preconfigured assay panel to de-
termine the levels of 22 different chemokine proteins in
equal amounts of total kidney extracts from all animals.
Most proteins and their roles in renal inflammation
have been recently discussed [18]. The levels of only
two chemokines, MCP-1 (2.58-fold, p<0.05) and
eotaxin (1.28-fold, p<0.05), were significantly in-
creased in the kidneys from the HFD-fed LEV rats
(Fig. 3a and Additional file 3). The relative mRNA ex-
pression of MCP-1 and eotaxin was also elevated in
the HFD group, though it was insignificant and highly
diverse among the animals (Fig. 3b).

Discussion

Diet-induced obesity is well recognized as an important
risk factor for renal impairment; however, the causal
mechanisms remain elusive. The main findings here are
that HFD-induced obesity promotes an inflammatory
and fibrotic microenvironment in aging rat kidneys that
is not only chemotactic for several types of immune cells
but also associated with the development of renal
lesions.

Experimental studies investigating obesity and its con-
sequences are commonly performed in rats; however,
the choice of strain can greatly influence the outcomes
[16]. Moreover, a specific proportion of animals from
the same strain is reported to become obese or hyper-
phagic [19]. Our observations suggest that the LEV
strain is a reliable model for the experimental study of
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Table 1 Blood chemistry in CD- or HFD-fed LEV rats

@B) HFD
creatinine [mg/dl] 037 +£003 04 + 004
urea [mg/dl] 2577 £ 127 2516 £ 3.22
cholesterol [mg/dl] 8337 +£7.71 95.75 £ 1493
LDL [mg/dl] 1637 + 246 19.5 + 4*
HDL [mg/dl] 54.62 + 5.87 60.12 + 593*
triglycerides [mg/dl] 8862 + 1037 151.12 + 37.37*
glucose [mg/dl] 115.08 + 7.83 11567 + 8.08
yGT [U/N] 225+ 1.56 6.37 + 2.56
Na [mmol/I] 14567 + 2.76 147.5 + 2.65
albumin [g/dl] 433 +0.09 42+02
total protein [g/dl] 6.6 +0.2 6.66 £ 0.13
Ca [mmol/1] 268 + 0.07 275+ 0.05
Mg [mmol/1] 0.55 + 0.03 054 £ 0.03
creatine kinase [U/I] 22662 + 2721 97537 + 323.21*

Values are given as the means + SEM. Significant differences were analyzed
using a two-way t-test and indicated by * for p <0.05 compared with
CD-fed rats

obesity. All 16 LEV rats in this study exhibited an in-
crease in weight greater than 18% after 50 weeks of HFD
consumption, and none of the animals were hyperphagic
or showed atypical food consumption. The gain of 18%
in body weight corresponds with the reported mean
range of 10-30% weight increase in rats depending on
strain and source of dietary fat [16]. Furthermore, we
started HFD feeding of the LEV rats at the young age of
24 weeks, which was also reported to be most effective
in inducing obesity in rats [20].

Animal models for obesity mainly use HFDs consisting
of 30-78% of total energy intake from fat by adding a
particular fat to the CD [21]. Not only the amount but
the source of fat has also been reported to have an im-
portant impact on obesity [16]. Here, we used semipuri-
fied diets composed of identical fat types and sources
with a defined macro- and micronutrient composition.
Importantly, the components of the HFD and CD were
identical, and the only difference between the CD and
HED in this study was the percentage of energy provided
from plant-derived fat (Additional files 1 and 2). Thus,
the phenotype reported here in the obese LEV rats is a
direct consequence of the dietary fat content and obes-
ity, resulting in elevated plasma levels of triglycerides,
LDL, HDL and cholesterol.

HFD-induced obesity and excessive lipid accumulation
have been suggested to impair skeletal muscle function
in various rodent models [22, 23]. A previous study
demonstrated that Sprague-Dawley rats, which were fed
the same diet as the LEV rats in this study, are less sus-
ceptible to obesity but display a significant loss of
muscle mass after long-term consumption of a HFD

Page 4 of 8

[24]. By comparison, obese LEV rats showed a minor de-
crease in muscle mass and function, as demonstrated by
the grip strength test and muscle cross-sectional area or
fiber quantity assessment (Figs. 1c and d). Therefore,
obese LEV rats do not experience excessive degradation
of muscle tissue and proteins, which could be a burden
on the renal system.

One of the main findings of our study is that long-
term obesity induces significant morphological changes
in aging kidneys, which was characterized by enhanced
renal inflammation, tubulointerstitial damage and fibro-
sis. This finding is in agreement with previous epidemio-
logical human studies suggesting that obesity is a
potential risk factor for the development of CKD inde-
pendent of cardiovascular abnormalities, diabetes or
metabolic syndrome [25-27]. Recent studies focused on
renal energy metabolism using models of obesity re-
ported direct effects from defective fatty acid oxidation
or activation on the endocannabinoid system in tubular
cells [28, 29]. Furthermore, a study using a genetic
model of obesity associated with a mutation in the leptin
receptor (fa/fa Zucker rats) reported a possible link be-
tween obesity and CKD [30]. In this context, the LEV
rat model may be particularly relevant, as it allows the
study of nutrition-mediated effects on kidney tissue re-
modeling as a direct consequence of a long-term HFD.
Our model also closely reflects the conditions leading to
the current human obesity epidemic resulting from the
current industrialization of food systems [31, 32].

In addition to the cellular and structural changes in the
kidneys of HFD-fed LEV rats, we observed a selective in-
duction of two CC-type chemokine proteins, eotaxin and
MCP-1, in crude kidney extracts. While both chemokines
were significantly upregulated at the protein level in the
kidneys of HFD-fed rats, this observation was less promin-
ent at the mRNA level. This finding may suggest that
eotaxin and MCP-1 genes are transcriptionally activated
in a specific type or limited number of kidney cells, lead-
ing to a steady accumulation of encoded proteins. Another
possible explanation is that eotaxin and MCP-1 expression
is induced at the posttranscriptional level. Nevertheless,
the elevated MCP-1 protein levels probably promote the
infiltration of macrophages and monocytes, which express
MCP-1 receptor CCR2 [11, 12]. Simultaneously, increased
accumulation of eotaxin protein in the kidney is possibly a
chemoattractant for eosinophils [13]. This could ultim-
ately explain the significant morphological changes in the
kidneys of HFD-fed aging LEV rats, which are character-
ized by enhanced inflammation, tubulointerstitial damage
and fibrosis.

Conclusions
Our data suggest that long-term HFD consumption and
obesity induce an inflammatory microenvironment in
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Fig. 2 Renal inflammation and fibrosis in 18-month-old LEV rats. (@) PAS-stained renal tissues of 75-week-old rats show only subtle changes in
those rats receiving a control diet (CD, upper two panels) compared to those fed a high-fat diet (HFD, lower two panels). In contrast to the CD,
the HFD led to widespread tubular dilatation (open triangles), massive infiltration of mononuclear cells (filled triangles), and enhanced
glomerulosclerosis (arrows) and tubular protein casts (stars). (b) The renal infiltration of ED1-positive monocytes/macrophages (Mo/M®) was
significantly enhanced in rats fed a HFD. (c) Immunohistochemical staining of a-smooth muscle actin (@SMA) shows, next to the constitutive
staining of smooth muscle cells, enhanced staining of profibrotic myofibroblasts in the tubulointerstitium of rats fed a HFD. (d)-(k) Quantification
of the renal changes shows significantly enhanced tubulointerstitial fibrosis (d), glomerulosclerosis (e) and tubular damage (f) in the HFD-fed rats
compared to CD-fed rats with a tendency for increased expression of aSMA (g) and type Ill collagen (h). The number of foci with renal immune
infiltrates (i) and the number of infiltrating Mo/M® (j) increased significantly by HFD compared to the CD. K. HFD-fed rats showed a significantly
enlarged area of tubular protein casts, pointing to enhanced proteinuria. Statistical significance (HFD vs. CD) was determined using two-way t-

tests or Mann-Whitney-U test and is denoted by * for p < 0.05, ** for p <0.01 or *** for p < 0.001
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Fig. 3 Chemokine expression in the kidneys of 18-month-old LEV
rats. (@) The diagram shows the relative protein expression of

eotaxin and MCP-1 in 1 ng of total kidney tissue extract from 18-
month-old rats as the means + SD of 8 CD-fed (open white bars)
and 8 HFD-fed (solid black bars) male LEV rats. The mean eotaxin

and MCP-1 levels in CD-fed rats were set to 1 for better comparison.

Statistical significance (HFD vs. CD) was determined using two-way
t-tests and is denoted by * for p < 0.05. (b) The diagram shows the
relative eotaxin and MCP-1 mRNA levels determined by QGP assay
[MFI = mean fluorescence intensity] in kidneys from 18-month-old
rats as the means + SD of 8 CD-fed (open white bars) and 8 HFD-
fed (solid black bars) male LEV rats. The differences between HFD-
and CD-fed LEV rats were not significant as determined by two-way
t-tests (p > 0.05)

the kidneys of aging LEV ratsthat is associated with glo-
merulosclerosis, tubular damage and an overabundance
of macrophages and inflammatory markers. In particular,
eotaxin and MCP-1 chemokines may be the key players
in this scenario. Although the reported effects due to
long-term HEFD are relatively subtle, they may be sulfti-
cient to sensitize the kidneys to CKD.

Methods

Animal procedures

Twenty-four-week-old male LEV rats were fed either a
HED (43% energy from neutral fat, based on lard and
corn oil) or a control diet (CD) (25% energy from neu-
tral fat) until the age of 75 weeks (18 months). Compared
with the CD, the HFD contained two-fold excess levels
of all fatty acid species, and polysaccharides were re-
duced by 37% in compensation (Additional files 1 and 2)
. The HED resulted in a 14% increase in metabolic en-
ergy compared with the CD. The concentrations of all
other components, including proteins, were equal be-
tween the HFD and CD. All rats were given ad libitum
access to water and food and were housed in groups of
three rats per cage at a constant room temperature of
20°C and on a 12-h light-dark cycle until the end of the
experiment. The study included eight HFD-fed and eight
CD-fed rats. Muscle strength was assessed using an
automatic grip strength meter (Bioseb grip strength
meter) according to the manufacturer’s instructions. The
study protocol was approved by our local Committee on
the Ethics of Animal Experiments.

Blood samples

At the age of 75weeks, rats were fasted overnight
(16 h), and blood samples were drawn from the tail
vein and transferred into heparin-coated vials. Plasma
was immediately prepared and stored at —20°C pend-
ing further analysis. All parameters were measured at
the central laboratory of the General Hospital Nurem-
berg using a COBAS C 702 analyzer (Roche Diagnos-
tics, Mannheim, Germany).
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Magnetic resonance (MR) examination

LEV rats were anesthetized with an intraperitoneal injec-
tion of pentobarbital (Narcoren®, Merial, Hallbergmoos,
Germany), and oxygen was delivered via a mask during
subsequent examinations. MR imaging (MRI) was per-
formed using Tesla clinical scanner (Magnetom, Siemens
Healthcare, Erlangen, Germany). The cross-sectional
area (CSA) was measured using T1-weighted, which
were applied to image the quadriceps muscles of ex-
tended forelimbs. The variation coefficient in 15 con-
secutive measurements for the assessment of CSA was
1.77%, indicating high reproducibility.

Histology and immunohistochemistry

A portion of the musculus vastus lateralis was partially
fixed in 10% neutral buffered formaldehyde, embedded
in paraffin, and cut into 5 um sections. In hematoxylin-
eosin (HE)-stained sections, 400 + 10% myofibers from
each animal were analyzed.

Renal tissue for light microscopy and immunohisto-
chemistry was fixed in formalin and embedded in paraf-
fin. Four-micron sections were stained with periodic
acid-Schiff’s reagent (PAS) and counterstained with
hematoxylin. In the PAS-stained sections, the percentage
of focal or global glomerulosclerosis, the grade of tubu-
lar damage and tubulointerstitial fibrosis were deter-
mined as previously described [32-34]. The details are
presented in additional file 4. The number of foci of im-
mune infiltrates and the percentage of the total area of
tubular protein casts was determined in the entire sec-
tion area (mean average of 106.2mm? following PAS
staining.

For the renal immunohistochemistry, four-micron sec-
tions of formalin-fixed biopsy tissue were processed by
an indirect immunoperoxidase technique and the posi-
tively stained tissue areas were quantified as previously
described [34, 35]. More detailed information is provided
in Additional file 4.

MultiPlex immunoassay

A ProcartaPlex immunoassay (Thermo Fisher Scientific,
Waltham, Massachusetts, USA) was used to assess the
levels of 22 rat inflammatory markers (IL-1 alpha, G-
CSF, IL-10, IL-17A, IL-1 beta, IL-6, TNF alpha, IL-4,
GM-CSE, IFN gamma, IL-2, IL-5, IL-13, IL-12p70,
eotaxin, GRO alpha, IP-10, MCP-1, MCP-3, MIP-1
alpha, MIP-2 and RANTES) in single muscle tissue sam-
ples. Sample preparation, assays and analyses were per-
formed as described in the manufacturer’s instructions.

QuantiGene Plex assay

Gene expression analysis was performed using a Quanti-
Gene Plex assay (Affymetrix Inc., Santa Clara, CA), fo-
cusing on eotaxin, MCP-1 and the housekeeping genes
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PPIB and GAPDH. Tissue homogenates were transferred
to a 96-well hybridization plate containing QuantiGene
Plex probe and Luminex bead sets. The QuantiGene
Plex assay was performed according to the manufac-
turer’s manual with all of the reagents and consumables
supplied by the manufacturer (Thermo Fisher Scientific,
Waltham, Massachusetts, USA).

Statistical analysis

The data are presented as the means + standard devi-
ation (SD) in the diagrams or as the standard error of
the mean (SEM) in the table. The parametric distribu-
tion of the data was assessed using D’Agostino-Pearson
omnibus test. The statistical significance of the paramet-
ric data was analyzed using two-way t-tests (unpaired,
unequal variance), and the Mann — Whitney U test was
used to analyze the nonparametric data as specified in
the figure legends. Differences with p-values <0.05 were
considered statistically significant in all experiments. Sig-
nificance levels were denoted by *p < 0.05; **p < 0.01; and
***p <0.001.

Additional files

Additional file 1: CD (w/10% energy fom fat). (TIF 130 kb)
Additional file 2: HFD (w/45% energy fom fat). (TIF 130 kb)

Additional file 3: Figure s3 Chemokine expression in the kidneys of 18-
month-old LEV rats. (TIF 48 kb)

Additional file 4: Evaluation of histology and immunohistochemistry.
(TIF 155 kb)
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