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Abstract

Background: There is currently an unmet clinical need to develop better pharmacological treatments to improve
glucose handling in Type II Diabetes patients with obesity. To this end, determining the effect of obesity-associated
adipokines on skeletal muscle insulin sensitivity has emerged as an important area of drug discovery research. This
review draws together the data on the functional role of adipokines on skeletal muscle insulin signalling, highlights
several understudied novel adipokines and provides a perspective on the direction of future research.

Main body: The adipokines leptin, resistin, visfatin and adiponectin have all been shown to affect skeletal muscle
insulin sensitivity by impacting on the activity of components within insulin signalling pathways, affecting GLUT4
translocation and modulating insulin-mediated skeletal muscle glucose uptake. Furthermore, proteomic analysis of
the adipose tissue secretome has recently identified several novel adipokines including vaspin, chemerin and pref-1
that are associated with obesity and insulin resistance in humans and functionally impact on insulin signalling
pathways. However, predominantly, these functional findings are the result of studies in rodents, with in vitro
studies utilising either rat L6 or murine C2C12 myoblasts and/or myotubes. Despite the methodology to isolate and
culture human myoblasts and to differentiate them into myotubes being established, the use of human muscle in vitro
models for the functional validation of adipokines on skeletal muscle insulin sensitivity is limited.

Conclusion: Understanding the mechanism of action and function of adipokines in mediating insulin sensitivity in
skeletal muscle may lead to the development of novel therapeutics for patients with type 2 diabetes. However, to date,
studies conducted in human skeletal muscle cells and tissues are limited. Such human in vitro studies should
be prioritised in order to reduce the risk of candidate drugs failing in the clinic due to the assumption that
rodent skeletal muscle target validation studies will to translate to human.
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Background
Type II diabetes (T2D) is a chronic metabolic disorder
that carries a significant and increasing economic burden
[1]. Unfortunately, there is no cure for T2D and treat-
ments are limited. Furthermore, the inability of patients to
maintain plasma glucose concentrations is associated with
a number of chronic pathologies, including microvascular
disease and macrovascular diseases such as stroke and
coronary artery disease [2].

One of the major treatment strategies for T2D patients is
to increase insulin sensitivity, either through lifestyle modi-
fications such as weight loss, or via the administration of
insulin-sensitising drug therapies including Biguanides such
as Metformin [3, 4] and Thiazolidinediones [5]. Alterna-
tively, some patients are prescribed Sulphoylureas, which
stimulate insulin secretion [6, 7]. However, these medica-
tions are associated with significant side-effects when taken
chronically and can become ineffective as disease pro-
gresses [8–13]. Therefore, there is great unmet clinical need
to develop more effective and more targeting therapeutics
for T2D patients.
In attempting to identify new therapies, skeletal muscle

has emerged as an important area of drug discovery re-
search. Muscle metabolic function is considered central to
maintaining insulin sensitivity [14, 15], being responsible
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for up to 80% of insulin-mediated glucose uptake in
healthy individuals [16]. Indeed, T2D patients display
impaired skeletal muscle glucose uptake in response to
insulin. Given the association of obesity and T2D and the
paradigm of adipose tissue as an endocrine organ [17–19],
recent studies have examined the cross-talk between
skeletal muscle and adipose tissue in the context of insulin
resistance. In obese individuals, adipose tissue is known to
become more “inflammatory”, with an increase in the
infiltration of immune cells including T-cell subsets [20]
and inflammatory M1 macrophages [21], which drive the
production of pro-inflammatory adipokines associated
with insulin resistance [22, 23].
Importantly, secretome analysis of human adipocyte cul-

ture medium has identified over 200 adipokines [24].
Therefore, understanding the functional and mechanistic
role of these adipokines on skeletal muscle insulin signal-
ling could identify novel targets for therapeutic interven-
tion. Here we summarise the key studies conducted to
date on the functional role of adipokines on skeletal
muscle insulin signalling, highlight several understudied
novel adipokines and provide a perspective on the direc-
tion of future research.

Established well known Adipokines
The adipokines leptin, adiponectin, resistin and visfatin
are known mediators of inflammation and have all been
implicated in metabolic diseases, including T2D. Below,
we highlight studies conducted on these adipokines which
relate to their functional role in skeletal muscle insulin
signalling, and summarise these findings in Table 1 in rela-
tion to animal and human data.

Leptin
The role of leptin as an inflammatory adipokine in meta-
bolic disorders is well studied. Systemic levels of leptin
positively correlate with both BMI and waist circumfer-
ence, and are associated with the development of insulin
resistance [25, 26]. Several studies have reported that
leptin impacts on skeletal muscle insulin signalling.
Stimulation of the rat L6 skeletal muscle cell line with
recombinant leptin reduced phosphorylation of the insu-
lin receptor substrate-1 (IRS-1) and impaired glucose
uptake, suggesting that leptin promotes insulin resist-
ance [27]. However, in contrast, leptin stimulation of
murine C2C12 myotubes was found to increase glucose
uptake, whilst overexpression of leptin in a ‘skinny’
mouse model increased insulin sensitivity [28, 29]. These
contrasting data highlight the need to conduct func-
tional studies on leptin in human myotubes. To this end,
Yau et al. reported that leptin increased AKT phosphor-
ylation in commercially available human myotubes [30].
However, to date the functional role of leptin on human
skeletal muscle insulin signalling is still understudied.

Adiponectin
Adiponectin is considered to be a beneficial adipokine in
relation to metabolism; plasma concentrations inversely
correlate with weight, central obesity, risk of T2D and
insulin resistance in humans [31, 32]. Furthermore,
maintenance of a low calorie intake increases both
adipocyte expression of adiponectin and circulatory con-
centrations [33].
Three different molecular weight isoforms of adipo-

nectin are found in the circulation, of which the high
molecular-weight isoform is beloved to be the most
functional in terms of glucose homeostasis. Functional
studies suggest that adiponectin promotes insulin sensi-
tivity in skeletal muscle. In C2C12 myocytes, adiponec-
tin increases fatty acid oxidation via sequential
activation of AMPK, p38 MAPK and PPARα [34, 35]
and promotes glucose uptake [35]. Similarity, in L6 myo-
tubes adiponectin induces glucose transporter 4
(GLUT4) translocation and glucose uptake [36]. In vivo,
adiponectin knockout mice demonstrate an obese, insu-
lin resistant phenotype, whereas systemic administration
of adiponectin, or its delivery as a transgene direct to
skeletal muscle, improves insulin sensitivity [37–40].
Adiponectin has also been shown to induce fat oxidation
via AMPK activation in human myotubes, and further,
this mechanism was found to be impaired in myotubes
from obese T2D patients [41]. Critically, this suggests
that the function of adiponectin as a promoter of insulin
sensitivity translates to humans. Furthermore, it suggests
that impairment of adiponectin function in skeletal
muscle of obese T2D patients may contribute in the
development of insulin resistance.

Resistin
First identified in murine adipocytes as a secreted pro-
tein capable of inducing insulin resistance [42], resistin
is a pro-inflammatory adipokine that induces the secre-
tion of TNFα and IL-6 from various cell types including
PBMCs and pancreatic acinar cells [43, 44].
The correlation between plasma resistin with both obes-

ity and insulin resistance in humans support a role for
resistin in the development of insulin resistance [45, 46].
In vitro, studies have demonstrated a reduction in AKT
phosphorylation and glucose uptake in C2C12 and L6
myotubes stimulated with recombinant resistin [47–49].
However, at present few studies have investigated the
functional role of resistin in the development of insulin
resistance in human skeletal muscle cells.

Visfatin
Visfatin (also called NAMPT) is termed an ‘adipokine-en-
zyme’ due to the NAD biosynthesis function of its intracel-
lular form (iVisfatin/iNAMPT), also exists extracellularly
(eVisfatin/eNAMPT) [50, 51]. eVisfatin is primarily

Nicholson et al. Journal of Inflammation  (2018) 15:9 Page 2 of 11



produced and secreted from visceral adipose tissue, where
it is more highly expressed in obese individuals [52]. Simi-
larly, higher systemic levels of evisfatin are associated with
obesity, ageing and the development of T2D [53–55].
Regarding the role of visfatin in mediating insulin sensi-

tivity, overexpression of visfatin in male wistar rats in-
creased whole body insulin sensitivity [56], and in adipose
tissue and liver, promoted insulin-mediated IRS-1 phos-
phorylation [56]. Data on the function of visfatin in skeletal
muscle insulin sensitivity is limited to studies in rodents.
Visfatin increases glucose transport in rat skeletal muscle
fibres [57]. Furthermore, in C2C12 myotubes, visfatin acti-
vates AMPK/p38 MAPK, induces GLUT4 expression and

translocation, and promotes glucose uptake [57]. Based on
these data, similar insulin sensitizing effects may occur in
human skeletal muscle.

Novel Adipokines
In addition to the well-known adipokines, proteomic stud-
ies of adipose tissue have identified several less charac-
terised adipokines that may also play important roles in
mediating skeletal muscle insulin sensitivity. At present the
functional effects of the majority of these novel adipokines
on human skeletal muscle insulin sensitivity s poorly
understood. Some of the more prominent novel adipokines
are discussed below and also summarised in Table 2.

Table 1 Evidence for the role of known adipokines in mediating skeletal muscle insulin sensitivity

Adipokine Association with obesity
and/or T2D in humans

Adipokine effect on insulin signalling in animal models Adipokine effect on insulin
signalling in human skeletal
muscle

In Vivo In Vitro

Leptin Increased [25, 26, 127]. Overexpression of leptin in a
skinny mouse model increased
insulin sensitivity [29].
Administration of leptin
(12–15 days) reversed insulin
resistance in obese wistar rats
[128].
Leptin reversed high fat diet
induced skeletal muscle insulin
resistance in rats, indirectly via
reducing intramuscular
triglycerides not though direct
modulation of insulin signalling
[129].

Recombinant leptin reduces IRS-1
phosphorylation and glucose
uptake in L6 myotubes [27].

Increased phosphorylation of
AKT in commercially available
primary human myotubes [30].

Recombinant leptin increased
glucose uptake in C2C12
myotubes [28].
Acute (10mins-1 h) stimulation of
L6 Myotubes directly increased
glucose uptake via a PI3K-dependent
pathway. Leptin pre-treatment (10 min)
of L6 myotubes inhibits insulin
stimulated glucose uptake [130].
24 h Pre-treatment of L6 myotubes had
no effect on glucose uptake but did
inhibit adiponectin stimulated glucose
uptake [131].

Adiponectin Decreased [31, 32]. Adiponectin knockout mice
demonstrate an obese and
insulin resistant phenotype
[37, 39].

Promotes glucose uptake in both
C2C12 and L6 Myotubes [35, 36].

Induces fat oxidation through
activation of AMPK in myotubes
from lean subjects. Mechanism
impaired in myotubes from T2D
patients [41].

Systemic administration and
overexpression of adiponectin
drives increased insulin
sensitivity in insulin resistant
mice [38, 40].

Recombinant adiponectin increased
glucose uptake via AMPK mediated
reorganisation of the actin cytoskeleton
and GLUT4 translocation via an
independent mechanism [130].

Resistin Increased [45, 46]. Administration of resistin (6 days)
to wild type mice induces a state
of insulin resistance [132].

Recombinant resistin Impaired insulin
signalling and glucose uptake in both
C2C12 and L6 myotubes [48, 49].

Unknown

Targeted reduction of resistin in
insulin resistant mice via
antisense oligodeoxynucleotide
restored hepatic but not skeletal
muscle insulin sensitivity [133].

Visfatin Increased [134–136]. Visfatin overexpression in rats
increased whole body insulin
sensitivity and adipose tissue
and liver IRS-1 phosphorylation
in response to insulin [56].

Stimulated glucose uptake and
increased GLUT4 membrane
translocation and mRNA and
protein expression in C2C12
myotubes via AMPK p38 MAPK
signalling [57].

Unknown

Increased glucose uptake in rat EDL
muscle [137].
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Vaspin
First reported as a 47KDa protein in the visceral adipose
tissue of the genetically obese OLETF rats [58], administra-
tion of vaspin to obese mice increased insulin sensitivity
and glucose tolerance [59]. Additionally, subcutaneous adi-
pose tissue expression of leptin, resistin and TNFα was
suppressed, whilst GLUT4 and adiponectin expression was
increased following vaspin administration [59]. Similar
increases in insulin sensitivity have since been reported in
db/db and C57BL6 mice following recombinant vaspin de-
livery [60]. Central administration of vaspin to obese mice
resulted in a sustained suppression of appetite that resulted
in reduced bodyweight and plasma glucose concentrations
[61]. Furthermore, transgenic mice overexpressing vaspin
displayed improved glucose tolerance, reduced systemic
IL-6 concentrations and were protected from obesity when
fed a high fat diet [62].
In humans, vaspin expression has been reported in

several tissues including subcutaneous adipose tissue,
skin, stomach and skeletal muscle [61, 63, 64]. Serum
concentrations of vaspin in non-diabetic and diabetic
patients positively correlate with BMI, bodyweight and
impaired glucose tolerance [65–68]. Given the functional
effects of vaspin demonstrated in the rodent models, its
increased expression with BMI in humans may reflect a
compensatory mechanism.
The effect of vaspin on insulin signalling and metabolism

in human skeletal muscle is currently undetermined. Simi-
larly, the mechanism of action and receptor for vaspin has
also not been elucidated. Recently, it was reported that in
HepG2 cells vaspin binds glucose-regulated protein
(GRP78), a 7KDa voltage-dependent anion channel. Fur-
ther, stimulation of H-4-II-E-C3 cells with recombinant
vaspin activated AKT and AMPK signalling pathways,
which was prevented by GRP78 inhibition [62]. Vaspin
may therefore mediate its effects on insulin signalling via
binding to GRP78. However, at present the expression of
GRP78 has not been profiled in human adipose or skeletal
muscle tissue, nor the functional studies conducted in hu-
man skeletal cells to validate GRP78 as the vaspin receptor.

Fibroblast growth factor 21
FGF-21 is established as a key mediator of fat oxidation
and in energy homeostasis [69–71]. Numerous studies
report that serum concentrations of FGF-21 are elevated
in obese individuals and positively correlate with insulin
resistance, BMI, % fat mass and circulatory concentra-
tions of leptin and LDL [72–75]. Although predomin-
antly produced by the liver, FGF-21 is also expressed in
adipose tissue, where it is more highly expressed in both
obese and diabetic mouse models.
In vivo, administration of FGF-21 to mice fed a high fat

diet decreased intramuscular triglyceride content, in-
creased insulin sensitivity and glucose uptake, and elevated

secretion of adiponectin from adipocytes [76]. Continuous
cerebral administration of FGF-21 for 2 weeks increased
whole body insulin sensitivity in rats with dietary-induced
obesity [77], whilst daily intravenous or subcutaneous
delivery of FGF-21 for 6 weeks improved glucose handling
in diabetic rhesus monkeys [78]. Following such positive
effects on insulin sensitivity and glucose tolerance, two
FGF-21 mimetics (LY2405319 and PF-05231023) have pro-
gressed to phase 1 clinical trials (NCT01869959,
NCT01923389) [79–83], and antibodies targeting FGFR1c/
b-Klotho have been developed [84, 85].
With regards to a direct functional role of FGF-21 in

skeletal muscle, incubation of isolated mouse EDL
muscle with FGF-21 increased insulin-stimulated glu-
cose uptake, and in human myotubes FGF-21 increased
both basal and insulin-stimulated glucose uptake [86].
Furthermore, FGF-21 has also shown to prevent
palmitate-induced insulin resistance in primary human
myotubes by inhibiting stress kinases and NF-κB [87].

Chemerin
Chemerin, was initially described as a novel chemoattract-
ant for macrophages and dendritic cells via activation of
several GPCRs including CMKLR1/ChemR23, GPR1, and
CCRL2 [88, 89]. More recent data suggests chemerin plays
an important role in the differentiation of human adipo-
cytes [90, 91], and in the development of insulin resistance.
Circulatory concentrations of chemerin are associated with
obesity, diabetes and metabolic syndrome [92–94] . Fur-
thermore, adipose tissue from obese subjects exhibits
greater secretion of chemerin [95].
At present, in vivo studies have drawn differing conclu-

sions regarding the role of chemerin in the development of
insulin resistance. Becker et al. reported that overexpres-
sion of chemerin increased insulin resistance in LDL-
receptor deficient mice fed a high fat diet, as evidenced by
reduced insulin-mediated AKT phosphorylation [96]. Im-
portantly this effect was only observed in skeletal muscle,
and not liver or pancreas [96]. Additionally, glucose hand-
ling and serum insulin concentrations were reduced by
chemerin administration to both obese and diabetic mice
[97]. However, no such effect was observed following che-
merin administration to control mice. In contrast, Takaha-
shi et al. showed that chemerin knockout mice display
increased skeletal muscle insulin resistance, due to a dis-
ruption of hepatic glucose production and reduced insulin
secretion from pancreatic Beta cells [98]. Additionally,
transgenic mice overexpressing chemerin were reported to
have increased skeletal muscle insulin sensitivity [98].
In vitro studies provide support for chemerin as a driver

of insulin resistance. Pre-treatment of C2C12 myotubes
with chemerin reduced insulin-stimulated glucose uptake,
while increasing the secretion of pro-inflammatory cyto-
kines including IL-6 and TNF-α [99]. Additionally,

Nicholson et al. Journal of Inflammation  (2018) 15:9 Page 4 of 11



Table 2 Evidence for the role of novel adipokines in mediating insulin sensitivity

Adipokine Association with obesity
and/or T2D in humans

Adipokine effect on insulin signalling in animal models Adipokine effect on insulin
signalling in human skeletal
muscle

In Vivo In Vitro

FGF-21 Increased [86]. Increased insulin sensitivity and glucose
uptake in mice, via FGF-21 mediated
increases in adiponectin production
and secretion from adipocytes [76].

6 h incubation of mouse EDL
muscle with FGF-21 resulted
in a 54% increase in insulin
stimulated glucose uptake
[86].

Directly increased glucose
uptake in primary human
myotubes [86].
Prevents palmitate-induced
insulin resistance in primary
human myotubes by
inhibiting stress kinases and
NF-κB [87].

Continuous cerebral administration for
2 weeks increased whole body insulin
sensitivity in rats with dietary induced
obesity [77].

Daily administration for 6 weeks
improved glucose handling in
diabetic rhesus monkeys [78].

Chemerin Increased [94, 138]. Overexpression increased insulin
resistance in LDL receptor deficient
mice by reducing AKT
phosphorylation in response to
insulin in skeletal muscle, but not
liver or pancreas [96].

24 h pre-treatment reduces
insulin stimulated glucose
uptake in C2C12 myotubes
in a dose dependent manor
[99].

24 h chemerin Increased
insulin resistance and
reduced insulin stimulated
glucose uptake in primary
human myotubes, mediated
by increased ERK signalling
[95].

knockout mice display increased
skeletal muscle insulin resistance
while transgenic mice exhibit
increased skeletal muscle insulin
resistance [98].

Acute chemerin treatment exacerbated
glucose intolerance and lowered
serum insulin levels in obese and
diabetic mice. No effect observed
in normoglycemic mice [97].

CTRP3 Decreased [115, 116, 139]. Administration of recombinant CTRP3
directly lowers glucose levels in
normal and insulin-resistant ob/ob
mice [140].

Administration of
recombinant CTRP3
to L6 myotubes had
no effect on glucose
uptake [140].

Unknown

Overexpression of CTRP3 improved
insulin sensitivity in HFD fed mice
[141].

Increased glucose uptake and
GLUT 4 mRNA expression in
insulin resistant adipocytes [142].

RBP4 Increased [143, 144]. Overexpression or direct administration
of RBP4 increased insulin resistance
in mice. RBP4 knockout improves
insulin sensitivity in mice [144].

unknown Unknown

Reducing circulating RBP4 in obese
mice models improved glucose
tolerance and increased insulin
stimulated glucose uptake in
skeletal muscle up to 60% [145].

Vaspin Increased [65, 67, 68]. Vaspin treatment increased insulin
sensitivity and glucose tolerance
in obese and diabetic mice [59, 60].

Unknown Unknown

transgenic mice overexpressing
vaspin displayed improved
glucose tolerance and were
protected from obesity when
challenged with a high fat diet
[62].
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treatment of primary human myotubes with recombinant
chemerin reduced insulin-stimulated glucose uptake [95].
Further cross-talk studies with primary human myocytes
and myotubes, particularly from obese and diabetic co-
horts may help to clarify the function of chemerin in hu-
man metabolic disease states.

Pref-1
Preadipocyte factor 1 (Pref-1) is a transmembrane pro-
tein processed to generate a circulating form, which is
also known as Foetal Antigen 1 (FA1) [100]. Studies have
described an association of increased Pref-1/FA1 serum
concentrations with obesity and T2D [101, 102]. Pref-1
is also reported to negatively regulate adipogenesis, with
Pref-1 deficient mice displaying significant obesity and
stunted growth [103, 104]. Overexpression of Pref-1 in
mice promotes a lipodystrophic phenotype and insulin
resistance via decreased skeletal muscle glucose uptake
and impaired skeletal muscle insulin signalling [105].
In humans, Pref-1 stimulation of myotubes from lean,

obese, and T2D patients with did not affect insulin sensi-
tivity. However Pref-1 did induce the production of the
pro-inflammatory IL-6 and CCL2 [106], and thus chronic
exposure of muscle to pathological levels of Pref-1 may im-
pair insulin sensitivity indirectly. Clearly, further studies
utilising human myotubes are warranted to fully determine
the functional role of Pref-1 in skeletal muscle insulin
sensitivity.

Follistatin-like 1
Follistatin-like 1 (FSTL1) is a glycoprotein with homology
to osteonectin and its expression is associated with systemic
inflammatory diseases including rheumatoid arthritis, lupus

and ulcerative colitis. Several in vitro studies have estab-
lished FSTL1 as a pro-inflammatory cytokine. For example,
over-expression of FSTL1 in the fibroblast-like COS7 cell
line or in human U937 monocytes induced the secretion of
pro-inflammatory cytokines IL-6, TNF-α and IL-1β [107].
With regards to adipose biology, FSTL1 is highly

expressed in 3 T3-L1 pre-adipocytes and is implicated in
their differentiation [108, 109]. Furthermore, stimulation of
3 T3-L1 adipocytes with recombinant FSTL1 inhibited
insulin signalling [108] In vivo, increased adipose tissue
expression of FSTL1 is reported in the leptin-deficient ob/
ob mouse, and in humans serum levels of FSTL1 positively
correlate with BMI [108]. Despite being expressed and
secreted by human myotubes [110] no studies to date have
reported the functional effects of FSTL1 on skeletal muscle
insulin signalling, using either rodent or human cells.

SPARC
SPARC (osteonectin) was first discovered as a glycoprotein
secreted from bone. However, it is now known that SPARC
is also expressed and secreted from adipose tissue. SPARC
adipose tissue expression is increased in dietary-induced
obesity in rats [111]. In humans, SPARC is secreted from
adipose tissue, implicated in adipocyte differentiation and
hyperplasia [112], and its expression in adipose tissue cor-
relates with fat mass [113]. Furthermore, serum levels of
SPARC are associated with insulin resistance, dyslipidemia
and inflammation in patients with gestational diabetes mel-
litus (GDM) [114]. Mechanistically, overexpression of
SPARC in 3 T3-L1 adipocytes downregulated GLUT4 ex-
pression and inhibited insulin-stimulated glucose uptake
[111]. Given these data, it seems likely that SPARC would
impair skeletal muscle insulin signalling. At present, these

Table 2 Evidence for the role of novel adipokines in mediating insulin sensitivity (Continued)

Adipokine Association with obesity
and/or T2D in humans

Adipokine effect on insulin signalling in animal models Adipokine effect on insulin
signalling in human skeletal
muscle

In Vivo In Vitro

Pref-1 Increased [101]. Overexpression in mice drives
insulin resistance via decreased
adipose tissue and skeletal muscle
glucose uptake and impaired
skeletal muscle insulin signalling
[105].

Unknown 4 Day exposure to primary
human myotubes from lean,
obese and T2D subjects had
no effect on glucose uptake
[106].

Follistatin-like 1 Increased [108]. Unknown Blunts insulin signalling-
adipocytes [108].

unknown

Omentin-1 Decreased [146, 147]. Unknown omentin-1 induced AKT
phosphorylation and enhanced
insulin-stimulated glucose
uptake in human adipocytes
[123].

Unknown
Unknown

Lipocallin-14 Unknown Over expression in diet induced
obese mice reduced glucose and
insulin levels while improving
glucose tolerance [124].

Unknown
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studies have not yet been conducted and so its functional
role in skeletal muscle is not established.

CTRP3
CTRP3 is a member of a family of proteins which includes
adiponectin. Similarly to adiponectin, CTRP3 has been
identified as an anti-inflammatory adipokine. In humans,
CTRP3 levels in the serum are lower in obese subjects
compared to normal-weight individuals [115, 116], and
negatively correlate with markers of insulin resistance
[116]. In vitro, CTRP3 inhibits LPS-induced expression of
pro-inflammatory cytokines in human macrophages [117],
whilst RNAi-mediated knockdown in preadipocytes in-
creased the expression of chemokines and reduced adipo-
nectin expression [118]. Its functional role in skeletal
muscle insulin signalling has not been characterised.

Omentin-1
Originally identified as a lectin-binding protein [119],
Omentin-1 (intelectin-1) is highly expressed in visceral
adipose tissue [120]. In humans, systemic concentrations
and adipose tissue expression of Omentin-1 are lower in
obese individuals [120] and negatively correlate with BMI
and insulin resistance [120]. Furthermore, lower serum
levels of omentin-1 are observed in newly diagnosed T2D
patients and its secretion from human adipose tissue is
decreased by both insulin and glucose [121, 122].
In vitro, studies support a role for Omentin-1 as an anti-

inflammatory adipokine, which suppresses the activity of
TNF-α in vascular inflammation via inhibiting p38 and
JNK pathways. A role for Omentin-1 in promoting insulin
sensitivity is supported by studies in human adipocytes
where recombinant Omentin-1 induced AKT phosphoryl-
ation and enhanced insulin-stimulated glucose uptake
[123]. Thus far, studies to determine its functional role in
skeletal muscle using either rodent models or human tissue
have not been reported.

Lipocalins
Lipocalins are a functionally diverse group of proteins
with a highly conserved tertiary structure that have been
implicated in inflammation and immune responses.
Importantly, a number of lipocalins, most notably
lipocalin-2 (LCN2) and RBP4 have been associated with
adipose tissue expression and obesity. Recently, a new
member of the lipocalin family was identified, termed
lipocalin-14 (LNC14), which in mice was found to be
predominantly expressed in WAT and was downregu-
lated in dietary-induced obese mice [124]. Furthermore,
adenovirus over-expression of LCN14 in obese mice im-
proved insulin sensitivity [124].

Conclusions
Obesity and its associated conditions including insulin
resistance and T2D are increasing globally, resulting in
substantial socioeconomic costs. Since adipose tissue se-
cretes a number of adipokines that can have both positive
and negative effects on insulin sensitivity and metabolism,
targeting adipokine signalling has emerged as a potential
area to identify and develop novel therapeutics. Therefore,
given that muscle is the major organ for insulin-stimulated
glucose uptake, understanding the function and mode-of-
action of such adipokines on skeletal muscle is critical.
To address this need, several in vitro functional studies

have been conducted utilising myoblasts isolated from
skeletal muscle tissue, and/or differentiated myotubes.
However, as illustrated in this review, such studies have
predominantly been conducted using cells derived from
rodent skeletal muscle, which is known to have different
fibre type composition and metabolic characteristics
than human skeletal muscle [125]. Unfortunately there-
fore, much of functional and mode-of-action data gener-
ated using these rodent in vitro models may poorly
translate to human skeletal muscle physiology. This is
critical, since it is known that the greatest reason for
late-stage failure of candidate drugs can be traced back
to failure of preclinical target validation studies to trans-
late to the clinic [126]. Furthermore, as highlighted in
Table 2, the functional roles of novel adipokines such as
FSTL1, SPARC and omentin-1 in mediating insulin sen-
sitivity in skeletal muscle have yet to be studied.
To fill this gap, future studies on the expression profile

of adipokines in humans need to be complimented with in
vitro functional studies that utilise myoblasts and myo-
tubes derived from human skeletal muscle biopsies or,
where relevant, derived from muscle biopsies collected
from T2D or insulin-resistant patients. Such studies will
greatly facilitate identifying and validating novel thera-
peutic targets capable of improving glucose management
that translate in the clinic.
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