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Interleukin-35 on B cell and T cell induction
and regulation
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Abstract

Interleukin (IL)-35 is a relatively newly discovered member of IL-12 cytokine family that is unique in that it is a dimer
formed by two subunits. The review documents the structure, secretion and signal transduction of IL-35, the
regulation effect of IL-35 on B cells and T cells as well as the adoptive transfer of IL-35+ regulatory B cells
(Breg), therapeutic prospects of recombinant IL-35 (rIL-35) and IL-35 regulation role in various diseases. B-cell
regulation expands the regulatory range of IL-35 and alters the view that IL-10 is the chief immune mechanism for Breg
cells which secrete IL-35. IL-35 induces Breg cells, which then can induce Treg cells. IL-35 also plays an immunomodulatory
role in the human body.
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Background
Interleukin (IL)-35 cytokine is a relatively newly discov-
ered member of IL-12 family which are unique in struc-
ture as they are dimer formed by two subunits. Existing
family members (IL-12, −23, −27) are similar in struc-
ture, receptor binding, and downstream signaling path-
ways that positively or negatively regulate the immune
system. IL-35 also strongly inhibits immune function
and this review will state the structure and secretion of
IL-35, its effect and regulation in B cells and T cells as
well as the therapeutic prospects of recombinant IL-35
(rIL-35) and IL-35 regulation role in various diseases.

Interleukin-35 (IL-35) structure and secretion
IL-35 was found by Niedbala [1] and Collison [2] almost
simultaneously and it is reported to contain IL-12α chain
p35 and IL-27β chain Epstein-Barr virus-induced gene 3
(Ebi3) connected by disulfide bond. IL-35, initially named
at the 13th International Congress of Immunology, is the
new focus of cytokines research. IL-35 is similar to other
IL-12 family members which are heterodimeric glycopro-
teins formed with disulfide-linked α (p19, p28, or p35)
and β (p40 or EBi3) chains. The α-chain has 4-α-helical
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bundles, a typical cytokine structure, and the β-chain is
homologous to the soluble cytokine receptor. p35 and p40
combine to form IL-12; p19 and p40 combine to form IL-
23; p28 and Ebi3 combine to form IL-27 [3]. IL-35 is com-
posed of p35 and Ebi3, and it differs from the expression
and secretion way of other IL-12 members. In response to
bacteria, bacterial products, or intracellular parasites, IL-
12, IL-23, and IL-27 are secreted by activated antigen-
presenting cells, including B cells, monocyte, macrophages
and dendritic cells [4–6]. IL-35 was initially reported to be
produced by Treg cells and was essential for maximizing
the inhibitory role of Treg cells [2]. Recently studies sug-
gest that regulatory B cells (Breg) also produce IL-35 and
rIL-35 fusion proteins can induce Breg cells to secret IL-
10 and IL-35 [7, 8].
IL-35 receptors and signal transduction
Peptide chain sharing is common to the IL-12 family as
they bind to receptors to activate signal transducer and
activator of transcription (STAT) proteins [9]. IL-35 is
uniquely anti-inflammatory cytokine in contrast to other
IL-12 pro-inflammatory cytokines [9]. This difference is
thought to be associated with the receptors and signaling
pathways specific to IL-35 and future studies should
confirm these assertions. An obstacle to understanding
the molecular mechanism underlying IL-35 is the lack of
clarity about the IL-35 receptor (IL-35R) and its signal
transduction pathway [9]. Collison’s group reported that
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mouse IL-35R differed from traditional cytokine receptors.
IL-35R is composed of dimers which are IL-12Rβ2 homo-
dimers, gp130 homodimers or IL- IL-12Rβ2/gp130 het-
erodimer [6]. IL-35 binds to IL-35R and initiates signal
transduction and exert biological function. IL-12Rβ2 or
gpl30 homodimer activates STAT4 or STAT1, but only IL-
35R in the IL-12Rβ2/gp130 heterodimer form can induce
STAT1- and STAT4-activated signaling pathways to medi-
ate Treg cell function and positively or negatively feedback
regulate IL-35 gene expression [2]. IL-35 is reported to ac-
tivate STAT1 and STAT4 in T cells [7] where IL-35 binds
to gp130 and IL-12Rβ2 receptors [2], both of which de-
pend on JAK-STAT signaling to introduce intracellular re-
sponses. However in B cells, IL-35 signaling mediates
STAT1 and STAT3 activation through IL-12Rβ2: IL-27Ra
heterodimers [8] (Fig. 1).
IL-35 regulation and signal transduction in Breg cells
B cells have been traditionally thought to contribute to
immune defense by secreting antibodies and antigen
presentation but they also have function in immune
regulation as Breg cells [10]. There are multiple B cell
subsets which have immune regulation function, such as
CD138+ plasma cells [11], B10 cells (CD1dhiCD5hi) [10],
CD21hiCD23hiCD24hi transitional 2-marginal zone pre-
cursor cells [12], and Tim-1+ B cells [13], but Breg cells
do not have a unified determined phenotype. It is gener-
ally recognized that Breg cells play a role in immuno-
suppressive function by secreting IL-10 under the
stimulation of toll-like receptor (TLR) agonists, CD40L,
and IL-21 [14].
Fig. 1 IL-35 signal transduction in T and B cells. Signaling through gp130 o
formation of the gp130/IL12Rb2 heterodimer is required for both STAT1 an
through the IL27Ra/IL12Rb2 heterodimer to STAT1 and STAT3 (right panel)
Furthermore immunosuppressive pathways of Breg
cells may not solely depend on IL-10 [15] as research
suggests that Breg cells can produce IL-35 and that rIL-
35 can induce Breg cells to secrete IL-10 and IL-35 [7,
8]. B-cell-derived IL-35 also acts on T cell-induced
Foxp3+ Treg cells [7, 15] (Fig. 2). Although rIL-35 in-
hibits B220hi B cell proliferation, it selectively induces
CD19+CD5+B220lo Breg cell proliferation in vivo [7].
Unlike T cells, inhibition of gp130 (with small interfering

RNA [siRNA] or neutralizing antibodies) does not affect
IL-35-mediated of B cell proliferation or IL-10 secretion.
In contrast, silence of IL-12Rß2 and IL-27Ra in B cells
completely blocks inhibition function of IL-35. Thus IL-35
may mediate biological activity in different cell types via
different receptors and STAT signaling pathways and
future studies are required to confirm those [14].

IL-35 regulation and signal transduction in T cells
IL-35 is a novel inhibitory cytokine that may be specific-
ally produced by Treg cells. It is required for maximal
suppressive activity of Treg. In addition, IL-35 can block
the proliferation of Th1 and Th17 cells by limiting early
T cell rest on the G1 phase of cell division [16].
Although IL-35 can inhibit Th1 proliferation, it is resist-
ant to Treg conversion due to the potent inhibition of
Ebi3 and p35 transcription by IFNγ from Th1. Moreover,
IL-35 blocks Th2 development by repressing GATA3
and IL-4 expression and limiting Th2 proliferation.
IL-35 can also mediate conversion of Th2 cells to Treg,
although this can be blocked by IFN-γ [17].
Like TGF-β and IL-10, IL-35 can induce the develop-

ment of an induced regulatory T cell (iTreg) population,
r IL12Rb2 homodimers to STAT1 or STAT4 separately in T cells, while
d STAT4 activation in Treg cells (left panel). B cells respond to IL-35



Fig. 2 IL-35 regulation in Breg cells. The immunosuppressive cytokine IL-
35 induces the expansion of Breg cells, which secrete IL-35 to protect
from autoimmune disease. Secretion of B cell–derived IL-35 seems to
have an autocrine role through activation of the IL-35 receptor (IL-12Rb2
and IL-27Rb) to expand or induce Breg cells. B cell–derived IL-35 also acts
on T cells to induce a Foxp3+ Treg cell population
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iTr35, which suppressed T-cell proliferation via IL-
35 [2]. iTreg do not express Foxp3, IL-10, and TGF-
β (Fig. 3). iTr35 were as effective as nTregs at
restoring immune homeostasis and preventing auto-
immunity disease in Foxp3−/− mice by limiting the
Fig. 3 iTreg generate. Naïve human or murine T cells were
stimulated with IL-35 and converted into a regulatory population –
iTr35 cells – which exhibit a highly restricted gene signature
(CD4 + Foxp3 − EBI3 + p35 + IL10 - TGFβ −).
proliferation of T cells and so prevented the model-
ing of EAE and IBD and promoted the proliferation
of B16 tumor cells. Adoptive transfer IL-35 treat-
ment increased the proliferation of Foxp3+CD39+

CD4+ T cells which secreted IL-10 for autoimmune
protection in a collagen-induced arthritis model [18].
However, whether the presence of IL-35 can mediate
Treg amplification under physiological conditions is
still uncertain.
While gp130 is fairly ubiquitously expressed, IL-12Rβ2 is

expressed mainly on the surfaces of activated T cells, nat-
ural killer cells, B cells, and dendritic cells [19]. IL-12Rβ2 is
undetectable on most resting T cells, but can be rapidly up-
regulated by exposure to IL-2, IFN-γ, IL-12, IL-27, and
TNF-α. Indeed, IL-2 or IL-27 pretreatment increases T cell
sensitivity to IL-35 mediated suppression [9].
IL-35 mediates the inhibitory effect on T cells through

the signal pathway of STAT1 and STAT4, but also lead
to the pro-inflammatory effects by activating the STAT
molecule of IFN-γ and IL-12, in which the key difference
is that IL-35 induced STAT1-STAT4 heterodimer forma-
tion [20, 21].

Recombinant IL-35
Highly purified heterodimeric cytokine IL-35 is difficult to
obtain and this is a limitation to immunology research,
especially for elucidating the role of this cytokine in
autoimmune, infectious diseases and tumor immunity.
Transgenic technology has been applied to infect cells to
establish a rIL-35 mouse model in which rIL-35 is a hetero-
dimer of p35 and Ebi3 [7]. Similar to IL-27, IL-35 is not
secreted as a disulfide-linked heterodimer as Ebi3 associ-
ates non-covalently with the IL-12p35 [22]. The native
Ebi3/p35 heterodimer would be difficultly to isolate in vivo
because only about 4% of the secreted Ebi3 co-precipitated
with the IL-12p35 in vitro over expression studies in COS7
cells [22]. Meanwhile, as the absence of IL-12p35 substan-
tial amount of the Ebi3 degraded in the ER (endoplasmic
reticulum), thereby reducing the bioavailability of ebi3.
These contribute to the low levels of IL-35 in vivo [23].
Others generated recombinant mouse IL-35 (rIL-35) using
a bicistronic vector containing IRES (internal ribosomal
entry site) that allowed stoichio etric expression of the Ebi3
and IL-12p35 [2]. Another approach that has been used is
to construct a heterodimeric protein covalently linking
Ebi3 and IL-12p35 [24].

IL-35regulation in various diseases
(1) IL-35 and autoimmune diseases.
Early studies mainly used a model of p35 or ebi3 deficient

mice. However, the absence of IL-12α affects the function of
IL-12 as well as that of IL-27 and IL-35. Despite these com-
plexities, Ebi3−/− and Il-12a−/− mice model also provide the
proof that IL-35 have immune suppressive function in some
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autoimmune diseases such as experimental autoimmune
uveitis (EAU) [7], experimental allergic encephalomyelitis
(EAE) [2], collagen-induced arthritis (CIA) [25], encephalitis
[26], and other conditions. That IL-35 fusion protein ob-
tained from genetic engineering produced data consistent
with the knockout model results and studies indicates that
injection of rIL-35 can be used to protect against allergic
airway model [27] as well as colitis [20] and autoimmune
diabetes [28]. Studies show that IL-35 regulates immune
function via T cells in many diseases. In NOD transgenic
mice, infusion of IL-35 over expressing islet cells significantly
alleviated symptoms of diabetes and local inflammatory
responses, reduced the number of effector CD4+ and CD8+

Tcells in pancreatic islet tissue, inhibited infiltration of Tcells
from transitioning from G1 to S phases, and decreased
effector T cells proliferation [28]. In a type II CIA model,
infusion of rIL-35 reduced local inflammatory responses by
inhibiting Th17 cell differentiation. In an Ebi3 subunit
knockout mouse model, enhanced Th17 cell infiltration and
aggravated inflammatory response was noted [1].
To study a potential regulatory role of IL-35+ Breg, a

model of EAU was established and rIL-35 or IL-35+
Breg could control the incidence and development of
EAU. IL-35+ Breg cell-mediated protection depended on
induction and proliferation of endogenous Breg cells and
Foxp3+ Treg cells and inhibition of pathogenic Th1 and
Fig. 4 a B cell–derived IL-35 can suppress T-cell and monocytic responses
activate Treg cells through IL-10 production and B7 costimulatory molecu
Th1response in patients with EAE. IL-10– and TGF-β–producing Breg cel
acquires the ability to produce IL-10. Breg cells from the tumor bed sup
in vitro, suppress IFN-γ production and inhibit CD8+ cytolytic T cell activity. Th
enhanced tumor growth
Th17 effector cells [7]. Adoptive infusion of rIL-35-
mediated Breg cells improved the animal health after
EAU eradication as well. This suggested that in vitro
study of functional rIL-35+ Breg cells may give insight
into potential roles for Breg and IL-35 Breg cells in
autoimmune disease and cancer. IL-35-derived Treg
cells (i.e., iTR35) can maintain Breg cells, but IL-35+
Breg cells can also induce Treg cells. Therefore, in an
inflammation-derived IL-35-dependent regulatory envir-
onment, different cell populations generated by IL-35
may interact via positive feed forward mechanisms and
induce iTR35 and IL-35 + Breg cells through infectious
tolerance [7] (Fig. 4).

IL-35 and tumor immunity
Previous work suggests that IL-35 plays a role in tumor
immune escape. Ebi3 expression was increased in
Hodgkin’s lymphoma [29] and more Treg cells and in-
hibitory cytokines were noted in peripheral blood and
tumor microenvironments of patients with pancreatic or
breast carcinomas [30]. Ebi3 expression in lung cancer
cells has also been found to be associated with tumor
progression and siRNA-mediated down-regulation of the
Eib3 gene inhibited proliferation of lung cancer cells
[31]. Similarly, inoculation of b16 tumor cells in Ebi3-
knockout mice showed enhanced anti-tumor immunity
. IL-10, IL-35, and TGF-β induce the Treg cell population. b Breg cells
les. Activated Treg cells release IL-10, suppresses the autoreactive
ls can suppress T-cell responses. c A subset of Breg cells also
port Treg expansion in vitro and in vivo, suppress T cell proliferation
ese B regulatory properties inhibit the anti-tumor response and lead to
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relative to wild-type mice and the metastatic potential of
tumor cells were suppressed. In an IL-35-positive tumor
cell microenvironment, studies showed that there were
significant increase in CD11b + Gr1+ myeloid-derived
suppressor cells (MDSC) and vascular endothelial
growth factors promoted tumor angiogenesis [32]. These
MDSCs were immunosuppressive and inhibited cyto-
toxic T cells. In this way, tumor cell-generated IL-35
may protect against cytotoxic T-cell-mediated damage.
In contrast, applications of neutralizing antibody to IL-35
significantly inhibited tumor cell proliferation [32].
Although many studies have shown that IL-35 contrib-

utes to immunosuppressive function in the mouse model,
but this effect is limited in humans [33]. No expression of
IL-35-derived Treg cells had been observed in early investi-
gations in humans. This suggests that IL-35 may not be
constitutively expressed in humans. However, it can be
produced in specific tissues and cell types after a certain
inflammatory stimulus. Recent studies have shown that,
under strong stimulation, Treg can produce IL-35, and
CD4+ T cells under the stimulation of IL-35 can express IL-
35similar to iTr35 in mice [34]. Similarly, in humans, CD8+

Treg can suppress the immune response against prostate
cancer by expressing CTLA-4 and IL-35 [35]. Although
more research is required to draw any conclusions, prelim-
inary information suggests that elevated serum IL-35 is
associated with tumor malignancy [36–38] and clinical
stage and decreased IL-35 is associated with autoimmune
disease and chronic infection [39–41]. (Fig. 4).

IL-35 and infectious diseases
IL-35, as an inhibitory cytokine, plays an important role
in infectious diseases. The study suggested that Myco-
bacterium tuberculosis (M. tuberculosis) could induce T
cell proliferation and foster IFN-γ production in p35-
deficient mice, P40 deficient mice, and wild-type mice,
thus eliminating the pathogen. Mice lacking p40 have
been found to be less able to show antigen-specific re-
sponses than those lacking the p35 subunit. However,
their ability to counteract infection is less pronounced
than that of wild-type mice [42]. In addition, the protect-
ive responses can be induced in wild-type and p35-
deficient mice by inoculating with vaccines, and
increased the secretion of IFN-γ and IL-17. However,
P40-deficient mice did not produce antigen-specific
IFN-γ or IL-17, and increased the infection load of
bacteria. In addition, treatment of p35-deficient mice
with Candida albicans (C. albicans) reduced the rate of
fungal infection and was associated with little to no ob-
vious symptoms of infection relative to P19-deficient
mice. In p35-deficient mice and those in which p35 gene
was disrupted, the immunosuppressive function of IL-35
was inhibited, which impaired anti-fungal immunity
[43]. The CD4+ T cells in the peripheral blood of
patients with chronic hepatitis B also showed high levels
of expression of p35 and EB13 protein, indicating that
IL-35 was related to the immune response of chronic
hepatitis B patients [44]. These results showed that,
during the acute infection process, IL-35 preferentially
activated Th1 cells, stimulated proliferation of Treg cells,
and inhibited the differentiation of Th17 cells, thereby
preventing excessive tissue damage caused by the clear-
ing of pathogens. In the chronic infection and inflamma-
tion, IL-35 selectively inhibited effector cells, including
Th17 cells, which slowed down the development of
autoimmune diseases [1]. (Fig. 4).

Conclusions
B-cell regulation expands the regulatory range of IL-35
and alters the view that IL-10 is the chief immune
mechanism for Breg cells which secrete IL-35. IL-35
signaling mediates STAT1 and STAT3 activation in B
cells by binding to IL-12Rβ2 and IL-27Ra receptors and
inducing Treg cells which provide mutual stimulation
under inflammation and amplification of regulatory cells.
IL-35-induced B cells also transform to secretary IL-35+

Breg cells and rIL-35 or IL-35+ Breg cells control the
incidence and development of EAU. IL-35 induces Breg
cells, which then can induce Treg cells. In the case of
inflammation, cells which can generate IL-35 provide
mutual stimulation, resulting in amplification of regula-
tory cells. Recent researchers have found that in some
inflammatory stimulus conditions, IL-35 also play an
immunomodulatory role in the human body, so we can
look forward to further exploring immunotherapy
approaches through IL-35.
Future studies may address whether IL-35 shares its

receptors with other IL-12 members and rIL-35 may
help clarify these biological effects and identify other cell
types or subtypes involved in immune regulation by
producing IL-35. How IL-35 inhibits cell proliferation,
why different cells mediate different signaling pathways,
and potential prospects of clinical use of IL-35 (rIL-35
and IL-35 Breg cells) as a chemotherapeutic or to treat
autoimmune diseases or organ transplantation also await
further study.
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