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AG490 suppresses EPO-mediated activation
of JAK2-STAT but enhances blood flow
recovery in rats with critical limb ischemia
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Abstract

Background: Erythropoietin (EPO) has been demonstrated to enhance recovery in ischemic organs through
enhancing angiogenesis. In this study, we used an experimental critical limb ischemia (CLI) rat model to reveal the
underlying mechanisms and directly examine the benefits of the anti-apoptotic capacity of EPO in the acute phase
of limb ischemia and following blood flow recovery.

Methods: To determine the role of the JAK2/STAT pathway in EPO-enhanced recovery after CLI, male
Sprague-Dawley rats (n = 8 for each group) were divided into group 1 (normal control), group 2 (CLI treated with
normal saline), group 3 (CLI treated with EPO), group 4 (CLI treated with AG490, a JAK2 inhibitor), and group 5
(CLI treated with EPO and AG490). Animals were sacrificed either at day 1 or day 14 and biochemical and
histopathological examination of ischemic quadriceps were conducted.

Results: At day 1, EPO administration reduced expression levels of apoptotic indices and activated the JAK2/STAT
pathway; this activation was inhibited by additional AG490 treatment. Furthermore, the decrease in the size of the
infarcted area, as well as activation of ERK1/2 and JNK showed similar regulatory trends with EPO or AG490 treatment.
Of Interest, EPO and AG490 in combination showed a synergistic effect, increasing expression levels of antioxidants (GR,
GPx, NQO-1) and decreasing transcriptional levels of pro-inflammatory factors (TNF-α, NF-kB). At day 14, laser Doppler
analysis showed that the blood flow recovery was enhanced by EPO, AG490, or combined treatment.

Conclusion: Although inhibition of the JAK2/STAT pathways reduces the anti-apoptotic effects of EPO in the early
phase of CLI, the benefits of AG490 in anti-inflammation and anti-oxidation still play a positive role in enhancing blood
flow recovery after CLI.
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Background
Peripheral arterial disease (PAD) is caused by chronic in-
flammatory processes associated with atherosclerosis [1].
Critical limb ischemia (CLI), which results in significant
blood flow reduction in feet and hands, is the most se-
vere form of PAD [2]. Although endovascular interven-
tion and open surgical techniques are widely used
treatments for CLI, amputation remains the final option
for a certain subset of patients [3–5]. Under general
medical care conditions, one year after diagnosis of CLI,

half of patients are dead or alive with amputations,
while only quarter of patients see symptoms resolve
[2]. So far, there is no satisfying pharmacologic therapy
to efficiently reverse arterial occlusive lesions, or the
subsequent impaired perfusion in ischemic limbs of
patients [6]. The purpose of pharmacologic treatment
for CLI includes risk factor modification and efforts to
improve blood flow [7, 8]. However, only patients with
mild to moderate intermittent claudication are advised
to undergo pharmacologic therapy [7]. Therefore, al-
ternate treatment approaches are urgently needed for
CLI.
Erythropoietin (EPO), a 165 kDa secreted glycoprotein,

was first characterized as a hematopoietic factor and has
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been widely used for the clinical treatment of anemia
[9–11]. EPO not only promotes the proliferation and dif-
ferentiation of erythroid precursors, but also plays an im-
portant role as an anti-apoptotic factor for hematopoietic
cells [12]. In general, the expression level of erythropoietin
is upregulated under hypoxic conditions and mediated by
a transcription factor, hypoxia inducible factor-1 (HIF-1)
[13, 14]. EPO is mainly produced by cells of the peritubu-
lar capillary endothelium of the kidney [15], while EPO re-
ceptors (EPOR) are widely expressed in various tissues,
including brain, retina, heart, kidney, smooth muscle,
myocardium, and endothelium [15]. The EPO-mediated
protective responses in anti-apoptosis are also found in
non-hematopoietic cells, e.g., renal tubular cells [16], neu-
rons [17], retina cells [18], cardiomyocytes [19], and endo-
thelial cells [17]. Recent studies also demonstrated that
EPO plays multiple functional roles in anti-inflammation
[15, 20], angiogenesis [21, 22], and in endothelial response
to increasing nitric oxide production [23]. The therapeutic
efficacy of EPO in amelioration of organ ischemic in-
jury or ischemia-reperfusion injury has been evaluated
through experimental animal models as well as clin-
ical applications [24–28].
EPO is activated through its binding to the EPO recep-

tor (EPOR), which is composed of two identical subunits
[29, 30]. After binding, the receptor is dimerized and
Janus kinase-2 (JAK2) is then recruited to the receptor
complex [29, 30]. After binding of EPO and EPOR, sev-
eral substrates of JAK2, including transcription factor
signal transducer and activator of transcription (STAT)
are recruited to the docking site of EPOR [29, 30].
STATs are phosphorylated by JAK kinases, leading to
dimerization and subsequent translocation to the nu-
cleus [29, 30]. After nuclear translocation, STATs bind
to promoters of several genes involved in anti-apoptosis,
including Bcl-xL, Bcl-2 and c-Myc. However, although
the activation of JAK2/STATs plays an anti-apoptotic
role in organ injury, this activated signaling is also in-
volved in upregulation of pro-inflammatory cytokine
generation [31–33]. Inhibition of JAK2 activity through
its inhibitors (i.e., AG490) has been applied as an ap-
proach to treat ischemia-reperfusion injury and auto-
immune arthritis in animal models [34, 35]. Hence,
revealing the underlying mechanism of EPO-mediated
cellular response is important for the selection and ad-
justment of clinical application of EPO in different types
of organ injuries.
Although EPO has been demonstrated to have thera-

peutic efficacy in treating critical limb ischemia in experi-
mental animal models [22], the underlying mechanisms
are still not completely clear. In the present study, we ap-
plied rat CLI models with a JAK2 inhibitor to determine
the whether the JAK2/STAT pathway is essential for EPO-
mediated blood flow recovery after CLI. In addition,

whether the anti-inflammatory role of AG490 contributes
in injury recovery from CLI was also examined.

Methods
Animal model of critical limb ischemia
Pathogen-free, adult male Sprague-Dawley (SD) rats
(n = 60) weighing 320-350 g (Charles River Technology,
BioLASCO Taiwan Co. Ltd., Taiwan) were used in this
study (n = 16 for each group): Group 1, normal control;
Group 2, critical limb ischemia (CLI) with normal saline;
Group 3, CLI with EPO; Group 4, CLI with AG490;
Group 5, CLI with EPO and AG490. EPO was injected
intramuscularly (1000 IU/kg), while AG490 was injected
intraperitoneally (3 mg/kg). EPO and AG490 were admin-
istrated at 30 min, 24 h, and 48 h after induction of CLI.
Animals were sacrificed at either day 1 or day 14 (8 ani-
mals from each group were sacrificed at each time-point).
For induction of critical limb ischemia by ligation of the
femoral artery, rats were placed in a supine position on a
warming pad at 37 °C with the left hind limbs shaved.
Under sterile conditions, the left femoral artery, small ar-
terioles and circumferential femoral artery were exposed
and ligated over their proximal and distal portions before
removal. To avoid the presence of collateral circulation,
the branches were removed together. After sacrifice, the
left quadricep muscles were collected for individual study.

Measurement of blood flow with laser doppler
Rats were anesthetized by inhalation of 2.0 % isoflurane
prior to CLI induction and on days 2 and 14 after CLI
induction prior to being sacrificed (n = 8 for each group).
The rats were placed in a supine position on a warming
pad at 37 °C. After being shaved over bilateral hind
limbs and inguinal areas, blood flow was surveyed by a
Laser Doppler scanner (moorLDLS, Moor, UK). The ra-
tio of blood flow in the left hind limb (ischemic) to that
in the right side (normal) was applied to determine the
blood flow recovery after CLI.

Quantitative reverse transcription-polymerase chain
reaction
Quantitative mRNA levels were determined using real-
time reverse transcription-polymerase chain reaction (RT-
PCR) with the Applied Biosystems 7900 HT Sequence
Detection System (Applied Biosystems) and TaqMan
Gene Expression Assay as previously described [36].

Western blot analysis
Equal amounts (10-30 μg) of protein extracts from is-
chemic quadriceps of the animals (n = 6 for each group)
were loaded and separated by SDS-PAGE using 7 or
12 % acrylamide gradients. Proteins were then trans-
ferred to nitrocellulose membranes. The membranes
were incubated with monoclonal antibodies against
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JAK2 (1:1000, Abcam), phosphorylated JAK2 (1:1000,
Abcam), STAT1 (1: 1000, Cell Signaling), phosphory-
lated STAT1 (1: 1000, Cell Signaling), STAT3 (1:500,
Cell Signaling), phosphorylated STAT3 (1:1000, Cell
Signaling), STAT5 (1:1000, Abcam), phosphorylated
STAT5 (1:500, Abcam), Akt (1:1000, Cell Signaling),
phosphorylated Akt (1:2000, Cell Signaling), JNK (1:500,
Sigma), phosphorylated JNK (1:1000, Abcam), ERK1/2
(1:1000, Cell Signaling), and phosphorylated ERK1/2
(1:2000). Signals were detected with HRP-conjugated
goat anti-mouse or goat anti-rabbit IgG. Immunoreactive
bands were visualized by enhanced chemiluminescence
(ECL; Amersham Biosciences) which was then exposed to
Biomax L film (Kodak). For quantification, ECL signals
were digitized using Labwork software (UVP).

Histopathological and immunostaining
The immunofluorescence (IF) staining and immunohis-
tochemical (IHC) staining were performed as previously
described [37]. In brief, fixed cryosections (10 μm) of
quadriceps were incubated with antibodies against CD31
(1:200, Abcam), EPOR (1:500, Abcam), or α-SMA
(1:400, Millipore) at 4 °C overnight, followed by incuba-
tion with fluorescence or HRP-conjugated secondary
antibodies. For quantification, ten randomly selected
HPFs (high power fields, 200×) were analyzed in each
section. The mean number per HPF for each animal was
then determined by summation of all numbers divided
by 30.

Statistical analysis
Data was expressed as mean values (mean ± SD). The
significance of differences between two groups was eval-
uated with t-test. The significance of differences among
groups was evaluated using one-way ANOVA, followed
by Bonferroni multiple comparison post hoc test. Statis-
tical analysis was performed using Prism 5 statistical
software (GraphPad Software, La Jolla, CA, USA). A
probability value of less than 0.05 was considered statis-
tically significant.

Results
AG490 administration inhibits phosphorylation of STATs
in quadriceps
To clarify the activation of the JAK2 pathway in EPO-
mediated enhanced recovery from limb ischemia,
AG490, a well-known JAK2 inhibitor, was applied to rats
that underwent femoral artery ligation. Apoptosis occurs
in the acute phase of ischemia. Since EPO has been re-
ported to function in the inhibition of apoptosis, the
quadriceps were isolated to examine the activation of
JAK2 and its downstream STATs in the ischemic area
(Fig. 1a). Results showed that both total and phosphory-
lated JAK2 was significantly higher in CLI rats with EPO

administration (Fig. 1b and c). The increased JAK2 phos-
phorylation in quadriceps of EPO-treated CLI rats was
blocked by AG490 (Fig. 1c). To further confirm the acti-
vation of the JAK2 pathway in CLI rats with EPO treat-
ment, the expression levels and phosphorylation status
of STAT family proteins in ischemic quadriceps were
then examined (Fig. 1a). Along with the activation of
EPO, the expression levels of phosphorylated STAT1
(Fig. 1e) and STAT5 (Fig. 1i) were increased in quad-
riceps of CLI rats with EPO treatment. The EPO-
mediated activation of the STATs was also abolished
with AG490. Of interest, the total expression and phos-
phorylated levels of STAT3 were significantly increased
by induction of CLI. These increases of STAT3 levels
were not further enhanced by EPO treatment, but were
abolished by AG490 (Fig. 1f and g).

EPO administration showed an anti-apoptotic activity in
ischemic quadriceps
Although EPO has been found to have an anti-apoptotic
function in vitro in cultured endothelial cells [38], its
physiological anti-apoptotic role has not been confirmed
in vivo. Hence, TUNEL assays were performed in situ to
detect the apoptotic nuclei in ischemic quadriceps
(Fig. 2a-f ). Results showed that the number of apoptotic
nuclei was increased after CLI induction (Fig. 2b) and
this increase was reversed with EPO treatment (Fig. 2c).
The administration of AG490 further increased the
number of apoptotic nuclei in CLI rats (Fig. 2d). More-
over, reduction of the number of apoptotic nuclei in
quadriceps of CLI rats by EPO was blocked by additional
AG490 treatment (Fig. 2e).
Quantitated real-time reverse transcription polymerase

chain reaction (RT-qPCR) was also performed to con-
firm the results of TUNEL assay (Fig. 2g-i). RT-qPCR
examination of transcripts of Bax (Fig. 2h) and caspase-3
(Fig. 2i), two pro-apoptotic indices showed similar regu-
latory trends to those observed in the TUNEL assay. In
contrast, mRNA expression levels of Bcl-2, an anti-
apoptotic factor, were decreased after CLI induction and
reverted with EPO treatment (Fig. 2g). In addition, the
blocking of EPO-mediated cellular protective function
against apoptosis in ischemic quadriceps by AG490 was
confirmed by RT-qPCR (Fig. 2g-i).

Infarct area in ischemic quadriceps is reduced by EPO
treatment
After CLI induction, the infarction of skeletal muscles is
usually accompanied by with loss of blood flow and cel-
lular apoptosis. Following the examination of apoptotic
events at the tissue and molecular levels, histopatho-
logical examination was performed to determine the in-
farcted area in the ischemic quadriceps (Fig. 3).
Quadriceps from rats were isolated and used for
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preparing cryo-section followed by Hematoxylin and
Eosin (H&E) staining. Infarcted areas in the quadriceps
of all groups were measured and calculated. The results
showed that the infarct areas increased after CLI induc-
tion and that this increase was reverted with EPO treat-
ment (Fig. 3b and c). AG490-only treatment increased
the infarct area in the quadriceps of CLI rats (Fig. 3d),
and reduction of the infarcted area in the ischemic
quadriceps by EPO was inhibited by additional treatment
with AG490 (Fig. 3e).

EPO and AG490 contribute to anti-inflammation and anti-
oxidation in the ischemic quadriceps
After ischemic injury, oxidative stress and inflammation
usually impair tissue regeneration and micro-circulation
reconstruction. Hence, the regulation of expression
levels of inflammatory and anti-oxidative factors by EPO
and AG490 in ischemic quadriceps was examined.
Twenty-four hours after CLI induction, the transcrip-
tional levels of inflammatory and anti-inflammatory fac-
tors were examined using RT-qPCR (Fig. 4). Results

showed that gene expression levels of tumor necrosis
factor (TNF)-α and nuclear factor kappa-light-chain-en-
hancer of activated B cells (NF-kB), two inflammatory
factors, were increased after CLI induction, while both
EPO and AG490 reduced their expression levels in is-
chemic quadriceps (Fig. 4a and b). It is worth noting
that, instead of inhibition, combined AG490 and EPO
treatment showed a synergistic effect in reducing the ex-
pression levels of inflammatory cytokines. The transcrip-
tional levels of interleukin (IL)-10, an anti-inflammatory
cytokine, was reduced after CLI induction; whereas
EPO, AG490, or combined EPO and AG490 treatments
increased the expression levels of IL-10 in ischemic
quadriceps with a synergistic pattern (Fig. 4c).
The mRNA expression levels of anti-oxidant genes,

heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreduc-
tase 1 (NQO1), glutathione reductase (GR), and glutathi-
one peroxidase (GPx) were increased after CLI induction
(Fig. 4d-g). Treatment with EPO, AG490, or combined
EPO and AG490 all further increased the transcripts.
Showing the same trend as IL-10, EPO and AG490

Fig. 1 EPO regulates the expression and phosphorylation levels of JAK/STATs in quadriceps after critical limb ischemia. a Twenty-four hours after
CLI, total protein was extracted from quadriceps and Western blots were performed with antibodies against JAK2, phospho-JAK2, STAT5,
phospho-STAT5, STAT1, phospho-STAT1, STAT3, and phospho-STAT3. b and c The expression levels of total and phosphorylated JAK2. d and e
The expression levels of total and phosphorylated STAT1. f and g The expression levels of total and phosphorylated STAT3. h and i The expression
levels of total and phosphorylated STAT5. Statistical analysis used one-way ANOVA followed by Bonferroni multiple comparison post hoc test
(n = 8 for each group). Symbols (*, †, ‡,) indicate significance at p value less than 0.05. EPO, Erythropoietin; JAK, Janus kinase; STAT, Signal Transducer
and Activator of Transcription
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synergistically enhanced the expression levels of anti-
oxidants (Fig. 4d-g).

Phosphorylation of ERK1/2 with that activation of the
JAK2/STAT pathway
Although JAK2/STAT signaling is usually considered to
be the downstream signal transduction of EPO, other
kinase-based signals, including MEK/ERK and PI3K/Akt
pathways have also been demonstrated to be involved in
EPO-triggered intracellular signaling. Therefore, we next
examined the total and phosphorylation levels of Akt,
JNK, and ERR1/2 proteins in the ischemic quadriceps
(Fig. 5a). Results showed that EPO, AG490, or combined
EPO and AG490 treatment did not regulate the total ex-
pression level and phosphorylation levels of Akt after
CLI induction (Fig. 5b and c). The total expression levels

of JNK showed no difference among all groups (Fig. 5d),
while the phosphorylation levels of JNK were increased
by induction of CLI. However, EPO and AG490 did not
regulate the activation of JNK (Fig. 5e) The total expres-
sion levels of ERK1/2 showed no difference among all
groups (Fig. 5f ), while the phosphorylation of ERK1/2
were increased after CLI induction and further enhanced
with EPO treatment (Fig. 5g). However, AG490-only
treatment or combined EPO and AG490 after CLI did
not regulate the phosphorylation of ERK1/2.

Activation of JAK2 signaling is important in EPO-
mediated increased expression of EPO receptors
The expression levels of EPO receptors in endothelial
cells were examined through immunofluorescence stain-
ing in quadriceps (Fig. 6). Results showed that the

Fig. 2 EPO administration reduces the number of apoptotic nuclei and regulates transcriptional levels of apoptosis indices. Twenty-four hours
after CLI, quadriceps from ischemic limbs were isolated for cryosections and total RNA extraction. Cryosections were used for terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay to detect apoptotic nuclei, and total RNA was used for real-time reverse transcription polymerase
chain reaction (RT-qPCR) with specific primers to determine the mRNA expression levels of Bcl-2, Bax, and caspase-3. a-e The apoptotic nuclei were
identified with TUNEL assay and indicated with black arrows. f The quantitation of the number the apoptotic nuclei. g The mRNA expression level of
Bcl-2, an anti-apoptotic index. h and i The mRNA expression levels of Bax and caspase-3, two apoptotic indices. Statistical analysis used one-way
ANOVA followed by Bonferroni multiple comparison post hoc test (n = 8 for each group). Symbols (*, †, ‡, §) indicate significance at p value less
than 0.05
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Fig. 3 EPO reduces the infarcted area in ischemic quadriceps. The infarcted area of the quadriceps was determined using Hematoxylin and Eosin
(H&E) staining. a Quadricep section from normal rats. b Quadricep section from rats with critical limb ischemia (CLI). c Quadricep section from
CLI rats treated with EPO. d Quadricep section from CLI rats treated with AG490. e Quadricep section from CLI rats treated with EPO and AG490.
f Quantitative evaluation of the infarct areas in quadriceps. Statistical analysis used one-way ANOVA followed by Bonferroni multiple comparison
post hoc test (n = 8 for each group). Symbols (*, †, ‡, §) indicate significance at p value less than 0.05

Fig. 4 EPO and AG490 administrations reduce the mRNA expression levels of inflammatory factors and increase the expression levels of
antioxidants. Twenty-four hours after CLI, total RNA extracted from quadriceps was used for real-time reverse transcription polymerase chain
reaction (RT-qPCR) to determine the mRNA expression levels of TNF-α, NF-kB, IL-10, HO-1, NQO-1, GPx and GR. a The mRNA expression levels of
TNF-α. b The mRNA expression levels of NF-kB. c The mRNA expression levels of IL-10. d-g The mRNA expression levels of HO-1, NQO-1, GPx, and
GR, four antioxidants. Statistical analysis used one-way ANOVA followed by Bonferroni multiple comparison post hoc test (n = 8 for each group).
Symbols (*, †, ‡, §) indicate significance at p value less than 0.05
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Fig. 5 Expression and phosphorylation levels of Akt, JNK, and ERK1/2 in ischemic quadriceps. a Total and phosphorylated protein expression
levels of Akt, JNK, and ERK1/2 were examined through Western blots with specific antibodies. b Expression levels of total Akt. c Expression levels
of phosphorylated Akt. d Expression levels of total JNK. e Expression levels of phosphorylated JNK. f Expression levels of total ERK1/2. g Expression
levels of phosphorylated ERK1/2. The protein expression levels are quantitated and normalized with the expression levels of β-tubulin. Statistical
analysis used one-way ANOVA followed by Bonferroni multiple comparison post hoc test (n = 8 for each group). Symbols (*, †, ‡) indicate significance
at p value less than 0.05

Fig. 6 EPO administration increases the expression levels of EPO receptors in ischemic limbs. Twenty-four hours after CLI, quadriceps from ischemic
limbs were isolated for cryosections and used for immunohistochemical staining to detect the expression and distribution of EPO receptor (EPOR).
a-e The endothelial cells were recognized with antibodies against CD31 and shown in green color. The expression of EPOR was recognized with
antibodies against EPOR and shown in red color. Arrows indicated the localization of EPOR positively stained (EPOR+) cells in quadriceps. f The
quantitation of the number of EPOR+ cells. Statistical analysis used one-way ANOVA followed by Bonferroni multiple comparison post hoc test
(n = 8 for each group). Symbols (*, †, ‡, §) indicate significance at p value less than .05
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number of EPO positively stained (EPO+) endothelial
cells was reduced after CLI induction, indicating the loss
of endothelial cells in the acute phase after CLI induc-
tion (Fig. 6b). However, EPO treatment not only reverted
the number of EPOR+ endothelial cells, but also in-
creased the intensity of EPOR signals (Fig. 6c). Of im-
portance, the increase of EPOR+ cells by EPO was
blocked by additional AG490 treatment (Fig. 6e).

Enhanced blood flow recovery with EPO and AG490
treatment
Fourteen days after CLI induction, we applied laser Dop-
pler analysis to examine the blood flow recovery in the
ischemic limbs. After quantitation, the ratio of ischemia
to normal blood flow (INBF) was used as the parameter
to determine the condition of blood flow recovery
(Fig. 7). The ratio of INBF in the CLI only group was
significantly lower than in the normal group by day 14
after CLI. It is interesting that not only EPO, but also
AG490 enhanced the blood flow recovery after CLI.
However, combined EPO and AG490 treatment did not
show synergistic effects in enhancing blood flow recov-
ery in ischemic limbs. To further confirm the enhanced
blood flow recovery by EPO and AG490, immunohisto-
chemical staining against α-smooth muscle actin (α-SMA)
was performed to determine the number of vessels in is-
chemic limbs (Fig. 8). As the result of laser Doppler

examination, the numbers of small vessels (diameter
<35 μm) in the quadriceps was reduced by CLI induction
and reverted with EPO treatment. AG490-only treatment
also increased the number of small vessels; however, the
increment was fewer than that in those treated with EPO.
No synergistic effect was found in CLI rats receiving EPO
and AG490 combined therapy.

Discussion
In the present study, we directly applied an experimental
rat model with critical limb ischemia to evaluate the ef-
fects of EPO and JAK2 inhibitor AG490 in preventing
apoptosis as well as in enhancing blood recovery in ische-
mic limbs. In addition, we also performed biochemical
analysis, histopathological examination, and immunostain-
ing to detect the activation of underlying signaling
responding to CLI insults and EPO treatment. The results
suggest that EPO can prevent cellular apoptosis and re-
duce the size of the infarct area in the ischemic quadriceps
during the acute phase of CLI (Figs. 2 and 3). We also
found that the phosphorylation of STAT1 and STAT5, but
not STAT3, was activated by EPO-mediated JAK2 activa-
tion in the CLI areas (Fig. 1). Moreover, our results
showed that the JAK2 inhibitor AG490 blocked the
activation of JAK2/STAT signaling and abolished the anti-
apoptotic efficacy of EPO (Figs. 1-3). However, AG490-
only treatment increased the synthesis of anti-oxidants

Fig. 7 EPO and AG490 administrations increase the blood flow recovery after critical limb ischemia induction in rats. a-e Fourteen days after CLI,
blood flows in the rat lower limbs were measured by laser Doppler. f Quantitation and calculation of blood flows. Statistical analysis using one-way
ANOVA, followed by Bonferroni multiple comparison post hoc test (n = 8 for each group). Symbols (*, †, ‡) indicate significance at p value less than
0.05. INBF, ischemia to normal blood flow
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and also reduced the gene expressions of inflammatory
factors (Fig. 4). It is worth noting that the combined EPO
and AG490 treatment showed synergistic effects in enhan-
cing anti-oxidation and anti-inflammation. At day 14 after
CLI, we found that EPO, AG490 and combined EPO and
AG490 therapies all increased the blood flow recovery
after CLI (Figs. 7 and 8). In addition, results from Western
blots showed that the activation of JNK and ERK pathways
in quadriceps were regulated by ischemic stress, EPO, and
AG490 (Fig. 5).

EPO-mediated intracellular signaling in ischemic limbs
Among STAT transcription factors, STAT5 is the most
prominent substrate to be phosphorylated with JAK2
[39, 40], while phosphorylated STAT3 and STAT1 are
only found in certain kinds of cells [41, 42]. In the
present study, we noted that the phosphorylation of
STAT5 and STAT1, but not STAT3, were upregulated by
EPO and along with the phosphorylation levels of JAK2.
In addition to the JAK2/STAT pathways, several
mitogen-activated protein kinases (MAPKs) signaling
cascades, including ERK, p38, and JNK, have been re-
ported to play roles in delivering ERO/EPOR signals
[43–45]. Results in this study also demonstrated that the
expression levels and phosphorylation levels of ERK1/2
were upregulated by EPO and reverted with additional
AG490 treatment (Fig. 5). Although previous studies
considered the activation of PI3K is important for EPO-
mediated phosphorylation of ERK [46], the activation of
Akt, another PI3K kinase substrate, did not increase

after EPO treatment in ischemic quadriceps (Fig. 5).
Hence, instead of PI3K, other kinase facility, i.e. Ras/Raf,
may contribute in the EPO-mediated, JAK2-dependent,
activation of MAPKs after CLI. Although tyrosine phos-
phorylation of STATs with JAK kinase is found in most
cells, some reports demonstrated the existence of JAK2-
independent phosphorylation of STAT5 [47, 48]. To
clarify this issue, we combined EPO and AG490 to treat
rat CLI and found that STAT5 activation in ischemic
quadriceps was in a JAK2-dependent manner. The in-
hibitory effect of AG490 in JAK2/STAT signaling has
been found in tissues with different pathological stresses,
including myocardial hypertrophy [49], liver ischemia-
reperfusion [35], traumatic brain injury [50], and chronic
renal disease [51]. In the present study, we further con-
firmed the effect of AG490 in inhibiting the activation
and JAK2 and its downstream phosphorylation of
STAT1, STAT3, and STAT5 in the critical limb ischemia
model.

Upregulation of anti-inflammatory and anti-oxidative
genes by EPO and AG490
In addition to roles in erythropoiesis, other functions of
EPO, including anti-apoptosis and angiogenesis, have also
been demonstrated [22, 30]. In this study, through the CLI
rat model, we found that EPO regulated the gene expres-
sion levels of inflammatory and anti-oxidative proteins
and showed a protective effect against inflammation and
oxidation. Of note, AG490 also provided similar anti-
inflammatory and anti-oxidation effects, despite its roles

Fig. 8 EPO and AG490 administrations increase the vessel density in quadriceps after critical limb ischemia induction in rats. The distribution of
small vessels (diameter < 35 μm) was detected with antibodies against α-smooth muscle actin. a Quadricep section form normal rats. b Quadricep
section form rats treated with critical limb ischemia (CLI). c Quadricep section form CLI rats treated with EPO. d Quadricep section form CLI rats
treated with AG490. e Quadricep section form CLI rats treated with EPO and AG490. f Quantitation of number of small vessels in quadriceps.
Yellow arrows indicate small vessels. Statistical analysis using one-way ANOVA, followed by Bonferroni multiple comparison post hoc test (n = 8 for
each group). Symbols (*, †, ‡, §) indicate significance at p value less than 0.05
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in blockage of JAK2 activity and impairing anti-apoptosis.
The distinct role of AG490 may be through inhibition of
JAK2, which reduces gene expression of anti-apoptotic
factors in endothelial and skeletal muscle cells, and also
inhibits inflammatory cytokine release, proliferation, and
activation in inflammatory cells. Hence, the distinct
physiological roles of AG490 on different kinds of cells
may provide contradictory effects in enhancing recovery
from ischemic injury.

Combined EPO and AG490 to treat CLI
Although the anti-inflammatory capacity of AG490 re-
duced the generation of inflammatory factors and also
increased the expression levels of anti-oxidants, its role
in blocking JAK2 activity impaired the anti-apoptotic ef-
fects of EPO in the acute phase of CLI. These seemingly
contradictory roles may explain the controversy sur-
rounding the effects of AG490 in the treatment of ische-
mia-reperfusion injury in different organs [35, 52–54]. In
this study, the examination of blood flow examination
using laser Doppler analysis also showed both EPO
and AG490 treatments enhance the blood flow recov-
ery after CLI; however, no additional benefit was
found in the combined treatment group. Since JAK2
activity is critical in the function of EPO in prevent-
ing ischemia-induced cellular apoptosis, the applica-
tion of AG490 should be avoided in the acute phase
of CLI. Combined EPO and delayed AG490 admin-
stration may provide better therapeutic efficacy in
treating CLI.

Conclusion
This study indicates that JAK2-dependent STAT activa-
tion plays an important role in EPO-mediated enhanced
blood flow recovery after CLI induction in rats. Al-
though AG490 inhibits the EPO-induced JAK2/STAT ac-
tivation in the acute phase of CLI, the benefits of AG490
in anti-inflammation and anti-oxidation still provide a
better outcome in rats with CLI. The functional effects
of EPO in anti-apoptosis, anti-inflammation, and anti-
oxidation provide therapeutic efficacy for injury recovery
after critical limb ischemia.
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