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Abstract

Eosinophilic chronic rhinosinusitis (ECRS) is considered a refractory and intractable disease. Patients with ECRS
present with thick mucus production, long-term nasal congestion, loss of sense of smell, and intermittent acute
exacerbations secondary to bacterial infections. Despite medical and surgical interventions, there is a high rate of
recurrence with significant impairment to quality of life. The recent increasing prevalence of ECRS in south Asian
countries and the strong tendency of ECRS to reoccur after surgery should be considered. The majority of cases
need repeat surgery, and histological examinations of these cases show eosinophilic-dominant inflammation. The
degradation and accumulation of eosinophils, release of cytokines, and mucus secretion have important roles in the
pathogenesis of ECRS. ECRS differs from non-ECRS, in which eosinophils are not involved in the pathogenesis of the
disease, and also in terms of many clinical characteristics, blood examination and nasal polyp histological findings,
clinical features of the disease after surgery, efficacy of medications, and computed tomography findings. This
review describes the clinical course, diagnosis, and treatment of ECRS as well as its pathophysiology and the role
of eosinophils, mucus, cytokines, and other mediators in the pathogenesis of ECRS.
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Background
Eosinophilic chronic rhinosinusitis (ECRS) is an inflam-
matory pathological condition of the nose and paranasal
sinuses [1]. Patients with ECRS present with loss of
smell, long-term nasal congestion, thick mucus production,
and intermittent acute exacerbation of secondary bacterial
infections. The quality of life of these patients is severely
impaired [2]. ECRS is a subtype of chronic sinusitis that is
thought to occur secondarily to systemic eosinophil deregu-
lation [3]. Patients with chronic rhinosinusitis (CRS) in the
United States and Europe are classified into two subtypes:
CRS with nasal polyps (CRSwNP) and CRS without nasal
polyps (CRSsNP) [4, 5]. The majority of patients who have
recurrence after surgery for nasal polyps have pronounced
eosinophilic infiltration of nasal polyp tissue. Additionally,
these patients have a strong tendency for the recurrence of
nasal polyps after surgery [5]. In East Asia, most CRS
patients exhibit purulent rhinorrhea including abundant
neutrophils [6] or neutrophils together with fewer eosinophils

[7]. These findings suggest that CRSwNP is heterogeneous
and can be divided into two subtypes: ECRS and non-ECRS
[8]. However, in Japan and other East Asian countries, such
as Korea, less than 50 % of CRSwNP patients exhibit such
eosinophilic-dominant inflammation, suggesting that the
pathophysiological presentation of CRS differs by race,
climate, and geographic region [9–11]. In short, ECRS
is the major endotype of CRSwNP in the United States
and Europe, and has been increasing in prevalence in
Asia [12, 13]. From 1999 to 2011 in Thailand, there was a
predominant change in patients from neutrophilic to eo-
sinophilic CRSwNP [12]. In Japan, in 2001, the term ECRS
was introduced to identify this subgroup of patients with
rhinosinusitis and eosinophilic infiltration of nasal polyps
[14]. Patients with ECRS represent a unique subtype,
and they especially remain the most resistant to med-
ical and surgical interventions [15]. Patients with ECRS
show a strong possibility of overlapping mechanisms
for eosinophilia and have a poor response to medical
and surgical management. Therefore, ECRS is considered
to be a refractory and intractable disease [2]. Several
stimuli, including fungal antigens, allergens, bacteria, and
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bacteria-derived superantigens, may be involved in the
pathophysiology of ECRS [16]. Thus, ECRS is thought to
reflect an inflammatory process and encompasses a wide
variety of etiologies [17]. The following subcategories pro-
vide adequate information and support mechanisms that
involve eosinophil infiltration and inflammation in ECRS:
1) superantigen-induced ECRS [18], 2) allergic fungal
sinusitis [19], 3) nonallergic fungal ECRS [20], and 4)
aspirin-exacerbated ECRS. Within each subcategory, a
specific antibacterial, antifungal, or immune process
may be indicated [15]. However, substantial confusion
exists especially in the categorization of fungus-related
eosinophilic rhinosinusitis [3, 20]. Certainly, there are
other mechanisms and categorizations of ECRS that are
still unknown. In this review, we discuss and focus on
treatment strategies and pathogenesis of ECRS from
different angles including the role of eosinophils, cyto-
kines, mucus production, and other mediators as well
as explanations of its clinical course, diagnosis, and
therapeutic interventions.

Cytokines, mucus, and other mediators
Multiple cytokines are involved in the pathogenesis of
ECRS. Elevated levels of circulatory eosinophils and tis-
sue eosinophils are prominent features of ECRS. Cyto-
kines are essential for hematopoietic cell development,
differentiation, and maturation. Interleukin (IL)-3, IL-5,
and granulocyte/macrophage-colony stimulating factor
(GM-CSF) are cytokines that are particularly important
in regulating eosinophil development [21]. Myeloid pre-
cursors are responsible for the formation of eosinophils
in bone marrow in response to cytokine activation, and
following an appropriate stimulus, they are released into
the circulation [22]. IL-5 is essential for the maturation
of eosinophils in the bone marrow and their release into
the circulation [23–26]. Once eosinophils have entered
the blood, they have a short half-life, ranging from 8 to
18 h [27]. After circulating in the blood, eosinophils migrate
into tissues. The tissue life span of eosinophils ranges from
2 to 5 days [28]. Various cell types are responsible for the
production of IL-5 [29]. In humans, IL-5 is a very selective
cytokine for eosinophils and basophils, in which it pro-
motes maturation, growth, activation, and survival [30, 31].
This specificity occurs because only those cells express the
receptor for IL-5. Once eosinophils enter the circulation,
they accumulate rapidly in tissues and synthesize and re-
lease lipid mediators, thereby causing edema, bronchocon-
striction, and chemotaxis. Furthermore, eosinophils secrete
enzymes and proteins that can damage tissues [22].
Eosinophils also function as antigen-presenting cells

and they can process and present a variety of microbial,
viral, and parasitic antigens [32]. In addition, eosinophils
treated with GM-CSF promote T cell proliferation in
response to staphylococcal superantigen (Staphylococcus

enterotoxins A, B, and E) stimulation [33]. Furthermore,
incubation of human rhinovirus-16 with eosinophils
promotes rhinovirus-16-specific T cell proliferation and
interferon (IFN)-γ secretion [34]. Platelet-derived growth
factor receptor alpha (PDGFRα) is implicated in cell
growth, transformation, proliferation, migration, and vascu-
lar permeability. Platelet-derived growth factor-α (PDGFα)
is a specific ligand for PDGFRα. IL-4 together with IL-5,
IL-1β, and PDGFα are critical for PDGFRα gene expression
that play a pivotal role in the pathophysiology of ECRSwNP
and non-ECRSwNP [35]. In a recent study, an anti-IL-9
antibody significantly reduced bone marrow eosinophilia in
an animal model; IL-9 was over-expressed in bone marrow
CD4+ cells after allergen exposure, suggesting that IL-9
may participate in the regulation of granulocytopoiesis in
allergic inflammation [36]. IL-13 is a critical cytokine in the
pathogenesis and development of allergic asthma both in a
mouse model and in humans [37, 38]. In eosinophilic para-
nasal mucosa cell culture, IL-13 acts by increasing the levels
of beta-catenin, which contributes to cell-cell adhesion in
CRS [39]. In a mouse model, treatment with IL-16 system-
ically diminished the release of IL-5 and bronchoalveolar
lavage eosinophilia [40]. However, Lackner et al. has shown
the expression levels of serum IL-16, IL-16 mRNA, and
IL-16 protein in mucus and tissue specimens and their
association with the presence of eosinophils in the
nasal polyps of ECRS patients. Finally, IL-16 stimulates
the migration and persistence of activated eosinophils
in ECRS [41]. The initiating mediators of T-helper 2
(Th2) inflammation are often seen in ECRS; IL-25 and
IL-33 are involved in the initiation of Th2 inflammation
and eosinophilia. Recent studies showed the overex-
pression of IL-25 and IL-33 in eosinophilic CRS, sug-
gesting that the release of these cytokines may preserve
eosinophilic inflammation in CRS [42, 43]. Elevated
levels of serum eosinophils correlate with IL-31 levels
in patients with allergic rhinitis and allergic asthma
[44]. Moreover, IL-31 together with other cytokines up-
regulate mucin gene expression and mucus production
[2, 45–47], which is the most common symptom of
ECRS and contributes to the worsening of the clinical
features of the disease.
Conversely, cytokines that have antagonistic effects, espe-

cially on Th2 inflammation, such as IFN-γ and trans-
forming growth factor (TGF)-β, are down-regulated in
ECRSwNP [48]. The complex chain of cytokines, chemo-
kines, and eosinophils and the mediators secreted by eosin-
ophils are integral to the pathogenesis of ECRS. Therefore,
it is important to understand the potential function and
activities of these cytokines, chemokines, and eosinophils
and the products of eosinophils. Table 1 summarizes the
function of cytokines in ECRS, and Figs. 1 and 2 describe
the complex pathways of cytokines, mediators, and the
survival of eosinophils in the pathogenesis of ECRS.
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Blood eosinophils
A number of studies demonstrated that there is an
association between peripheral eosinophilia and a high
percentage of eosinophil infiltration in paranasal sinuses
[49]. Eosinophils are considered the most important
inflammatory cells in this disease [50]. The accumulation
of activated eosinophils within tissue is thought to be a
hallmark of this condition [51]. In addition, there is re-
portedly an association between the eosinophil count
and the severity of paranasal cavity lesions in patients
with ECRS. Moreover, there is a correlation between an
increase in the circulating eosinophil count and the se-
verity of paranasal cavity computed tomography (CT)
findings [52]. Furthermore, the percentage of circulatory
eosinophils and prevalence of asthma complications are
reportedly significantly higher in patients with ECRS
than in non-ECRS patients, and are associated with the
severity of paranasal cavity lesions [53]. Since blood

eosinophilia is significantly correlated with eosinophil in-
filtration in the nasal polyps of ECRS patients [14], the
percentage of blood eosinophils could be a good marker
for eosinophilic inflammation of the nasal polyps [8].

CT scan images
A better understanding of the clinical features and
specific characteristics of CT images will facilitate the
diagnosis of ECRS. Researchers have found a direct
association between the severity of paranasal cavity CT
findings and an increase in the circulatory eosinophil
count [52]. Thus, a blood examination for detecting eosin-
ophils may help with CT findings. Moreover, there is sig-
nificant correlation between the degree of eosinophil
infiltration of the ethmoidal mucosa and the severity of
CT scan images [54]. In ECRS, the ethmoid sinuses
show predominant opacification, especially in the posterior
sinus and olfactory cleft in the early stages, whereas in

Table 1 Possible functions and activities of cytokines in ECRS

IL-3, IL-5, GM-CSF Hematopoietic cell development, differentiation, and maturation

IL-4, IL-5, IL-1β, PDGFα Critical for PDGFRα

IL-9 Regulates granulocytopoiesis in allergic inflammation

IL-13 Increases the levels of beta-catenin, which contributes to cell-cell adhesion, increases mucus production

IL-16 Stimulates the migration of persistently activated eosinophils

TGFα, IL-31, Th2 cytokines Increase mucus production

IL-25, IL-33 Initiate Th2 inflammation and eosinophilia

IFN-γ, TGF-β Downregulated in ECRS

Fig. 1 Possible involvement of cytokines, mucus production, and other mediators in the pathogenesis of ECRS
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non-ECRS, maxillary sinuses show predominant opacifica-
tion in the late stages [14]. Furthermore, for the extent of
grading the severity of the disease, the Lund–Mackay
staging system (where 0 means no abnormality, 1 means
partial opacification, and 2 means total opacification) [55]
provides a useful clinical tool. Figure 3a shows a normal
CT scan of a 75-year-old man and Fig. 3b shows opacity
in the ethmoid sinus of a 45-year-old woman diagnosed
with ECRS.

Diagnosis
Patients with ECRS exhibit clinical characteristics that
include long term nasal congestion, mucus production,

olfactory disturbances, bilateral nasal polyposis, and
intermittent acute exacerbation of secondary bacterial
infections [2]. A combination of the cut-off values for
three predictors (increased blood eosinophil percentage
above the normal range, olfactory cleft score ≥1, and
posterior ethmoid score ≥1) has high diagnostic accuracy
and can differentiate ECRS from non-ECRS with high
accuracy [8]. In ECRS, nasal polyps arise bilaterally from
the middle meatus and from inside the middle turbinate,
which may be why ECRS patients complain of a smell
disorder in the early stage of the illness [14]. In case of
allergic fungal sinusitis, there is allergic mucin-type CRS
in which the mucus contains clusters of eosinophils, and

Fig. 2 Involvement of cytokines in the production and survival of eosinophils

A B

Fig. 3 CT images of a normal 75-year-old man (a) and a 45-year-old woman diagnosed with ECRS (b). The arrow indicates opacity in the
ethmoid sinuses
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fungi are also detected by histological examination or
culture [56]. Briefly, bilateral nasal polyposis, predomin-
ant opacification of the ethmoid sinuses, peripheral
blood eosinophil count above the normal range, strong
tendency for and recurrence of nasal polyps after sur-
gery, and effectiveness of systemic steroids against recur-
rent nasal polyps together with the characteristic clinical
signs and symptoms of the disease confirm the diagnosis
[8, 57]. Therefore, it seems that detailed present and past
history/physical examinations of the patient, response to
previous treatments, laboratory investigations, manifest-
ation of olfactory dysfunction, and CT scan would be
helpful for the diagnosis of ECRS.

Surgery
Since there is no approved medication to treat patients
with ECRSwNP completely, surgery is often needed to
clear the sinonasal passage, and repeated endoscopic
sinus surgery (ESS) is often required [58]. In cases of
chronic sinusitis with severe eosinophilic infiltration, the
post-operative prognosis is poor compared to cases with
sinusitis where the problem is primarily due to the ob-
struction of the ostiomeatal complex (OMC) (OMC is
the functional unit of the anterior ethmoid complex and
provides final common pathway for drainage and ventila-
tion of the frontal, maxillary and anterior ethmoid sinuses)
[51, 59, 60]. Therefore, morphological abnormities of the
OMC are not considered to have a significant role in si-
nusitis where there is a high percentage of eosinophil infil-
tration in the paranasal mucosa. Activated eosinophils in
nasal polyps serve as an index in ECRS [61]. Since ECRS
is a type of chronic sinusitis that is considered to occur
secondarily to systemic eosinophil deregulation [3], the
benefit of surgery is significantly less in these patients, es-
pecially where the circulating eosinophils represent 6 % or
higher of the total number of blood cells. Thus, a high cir-
culating eosinophil count can be considered as an index of
poor prognosis [62].
Moreover, the presence of mucosal eosinophilia (>10

eosinophils/high-power field) at the time of ESS consist-
ently predicts less improvement in both disease-specific
measures and general quality of life compared to the
absence of eosinophilia [63]. Additionally, in a study
group, 13 of 14 patients (92.9 %) who were treated
with multiple courses of oral corticosteroids, revision
surgery, or revision surgery together with oral cortico-
steroids, showed recurrence after 6 months’ follow-up
[11]. Furthermore, surgery is often complicated by
adhesions and scarring that can comprise the success
of the procedure and the results are often poor [64].
The combination of ESS together with long-term low-
dose macrolide therapy relatively controls the symp-
toms of patients with non-ECRS [65, 66], whereas
ECRS is unresponsive to macrolide therapy [8]. In a

recent report, the benefit of ESS was shown for both
types of CRS, especially for ECRS patients with asthma
[67]. Surgery is thought to reduce the need for medi-
cation in asthmatic patients [68]. The reduction or
complete loss of the sense of smell is a characteristic
symptom of ECRS [6, 15, 69], and it was shown that the
degree of olfactory dysfunction in sinusitis complicated by
asthma, which is a representative disease of eosinophilic
infiltration, was more severe than the olfactory dysfunc-
tion seen in sinusitis caused by OMC accumulation. How-
ever, after ESS, the improvement of patients in whom
olfactory dysfunction was caused by asthma was better
compared with those in whom olfactory dysfunction was
caused by OMC [70]. In a recent study, Lind et al. indi-
cated that there was a significant impact of surgery on pa-
tients who had CRSwNP and also CRSsNP [71]. In
addition, Costa et al. clarified that patients with recurrent
acute rhinosinusitis benefit from both medical and surgi-
cal therapeutic interventions [72]. Undoubtedly, there is
still the need for further investigations of additional ad-
vanced strategies to treat patients with ECRS.

Medical treatment
The effectiveness of low-dose, long-term erythromycin
treatment (macrolide therapy) was reported for the
treatment of CRS in Japan [65, 73, 74]. In the 1990s, the
combination of macrolide therapy and ESS became the
gold standard treatment for CRS [66]. Unfortunately,
some CRSwNP cases are refractory to combined medical
and surgical interventions. The histological characteris-
tics of these cases showed marked eosinophil infiltration
of the nasal polyps [14, 75]. Thus, in Japan, since 2001,
the term ECRS has been used to classify this subtype of
CRSwNP [6]. The typical symptoms, co-morbid asthma,
effectiveness of steroid therapy, and recurrence rate
after surgery, clinically differentiate ECRS from CRSwNP
(non-ECRS) [6, 14].
As mentioned before, the treatment strategies for ECRS

differ from those for non-ECRS; a diagnostic criterion for
ECRS is thought to be very useful to decide a treatment
strategy in an outpatient setting [8]. If sinusitis with severe
eosinophilic infiltration is diagnosed prior to surgery, it
would be possible postoperatively to decide specific medi-
cation for the treatment of asthma that also has an effect
on nasal polyposis, instead of macrolides. Additionally, it
would be possible to make it clear to patients with sinus-
itis involving eosinophils that they have a high possibility
of a poor postoperative prognosis that will require long-
term postoperative care [69].
Systemic deregulation of eosinophils is thought to

be involved in the pathogenesis of ECRS [3]. Once the
number of eosinophils increases in the circulatory system,
they accumulate rapidly in tissues where they secrete
enzymes and proteins that can damage tissues, and they
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also synthesize and release lipid mediators that can cause
edema, bronchoconstriction, and chemotaxis [22]. Eo-
sinophils are therefore an ideal target for the selective
inhibition of tissue damage [29]. IL-5 is required for
the maturation of eosinophils in bone marrow and their
release into the blood [24–26]. Both in humans and ani-
mals, inhibiting IL-5 with monoclonal antibodies (mAbs)
can decrease circulatory and bronchoalveolar eosino-
philia caused by an allergic challenge or chronic disease
[76–79]. Anti-IL-5 antibodies inhibit the action of IL-5,
which has an important role in the pathogenesis of asthma
by damaging tissue due to eosinophil accumulation during
pulmonary inflammation. Recently, multiple studies have
shown the efficacy of mepolizumab, a humanized anti-
IL-5 mAb that is considered to be safe and has a signifi-
cant effect on the recovery of nasal polyposis character-
ized by eosinophilic inflammation [80, 81]. Moreover,
it does not induce immunosuppressive consequences
that can arise from the systemic use of drugs such as
steroids [29].
Although, CRSwNP is characterized histologically by

an abundance of eosinophilic inflammatory changes, the
levels of leukotriene C4 in patients with recurrent sino-
nasal polyps after surgery are significantly higher than in
healthy controls, and higher leukotriene C4 levels can be
an indicator of the risk of recurrence of nasal polyps
[82]. Recent studies have shown the role of leukotrienes
in asthma and chronic sinusitis, specifically in those sub-
types involving eosinophils. Leukotriene receptor antago-
nists, for example, montelukast and zafirlukast, and the
leukotriene synthesis inhibitor zileuton have been shown to
reduce the symptoms and decrease the steroid requirement
of these patients [83, 84].
In European [85] and United States [86] guidelines,

corticosteroids are the first-line and most effective treat-
ment for patients with CRSwNP. Basically, intranasal
corticosteroids are used as a first-line treatment [87, 88].
Wang et al. showed the efficacy and clinical improve-
ment of short-term intranasal budesonide nebulization
in patients with ECRS [89]. However, for cases that are
not controlled with intranasal corticosteroids, a short
course of oral corticosteroids is required for CRSwNP,
and in cases where medical therapy has failed, ESS is
required [87, 88]. The current guidelines for severe
CRSwNP patients also recommend combined oral and
intranasal corticosteroid therapeutic strategies. Steroids
modulate nasal polyp mucosa remodeling, particularly
by promoting epithelial repair and regulating tissue
remodeling markers, increase total collagen content,
reduce tissue eosinophil infiltration [90], improve nasal
symptoms and airflow, and reduce the size of polyps
[91]. The mechanism underlying the effects of nasal
steroids seems to be multifactorial, starting with their
binding to glucocorticoid receptors, which reduces the

number and degree of antigen-presenting cells, activated
T cells, and eosinophils [49]. The cellular mechanism that
induces cell resistance to topical glucocorticoids may be
one of the major causes of the clinical failure of ECRS
treatment [92, 93].
Alessandri et al. showed that AT7519, a novel cyclin-

dependent kinase inhibitor, causes apoptosis in human
and mouse model eosinophils, indicating that such inhibi-
tors can have a therapeutic role in eosinophil-dominant
allergic disorder treatment [94]. A newly published study
clarified that an anti-CD30 mAb significantly increased
eosinophil apoptosis compared with controls. By western
blot analysis, the anti-CD30 mAb was shown to decrease
significantly the expression of Bcl-2 and procaspase-9 and
-3 and increased the expression of caspase-9 and -3, sug-
gesting that this mAb induces human eosinophil apoptosis
via the Bcl-2 and caspase pathways [95]. In another study,
a complex topical stimulus (allergen challenge) was ap-
plied to the tracheobronchial airway of guinea pig, and
eosinophils were determined by selective tracheobronchial
lavage and histological examination of the tissue. After
10 min, migration of eosinophils into the airway lumen
occurred and the numbers of tissue eosinophilia were
reduced by 63 and 73 % [96]. A recent study showed that
verapamil modulates IL-5 and IL-6 secretion in human
sinonasal polyps and may have a possible role in the man-
agement of CRSwNP [97]. There are also other multiple
studies performed on animal models that have potential
use for the treatment of ECRS. Recently, new studies have
shown the role of the effects of intranasal cyclosporine
and resveratrol in the management of eosinophilic rhinosi-
nusitis using animal models [98, 99]. Hopefully, these new
findings will help to discover advanced therapeutic agents
for the treatment of patients suffering from ECRS, and to
improve their quality of life.

Conclusion
ECRS is an intractable and persistent disease of the nose
and paranasal sinuses. Eosinophilic degradation and ac-
cumulation, the release of cytokines and chemokines,
and mucus production have an important role in the
pathogenesis of this disease. The clinical features reflect
the complicated condition of ECRS that seems to be
resistant to the current available medical therapies and
has a high rate of recurrence after surgery. Further stud-
ies are needed particularly focusing on the function of
cytokines, chemokines, and eosinophils and the produc-
tion of eosinophils to achieve a precise treatment, pre-
vention, and the required outcomes.
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