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Mycobacterium leprae alters classical
activation of human monocytes in vitro
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Abstract

Background: Macrophages play a central role in the pathogenesis of leprosy, caused by Mycobacterium leprae.
The polarized clinical presentations in leprosy are associated with differential immune activation. In tuberculoid
leprosy, macrophages show a classical activation phenotype (M1), while macrophages in lepromatous disease
display characteristics of alternative activation (M2). Bacille Calmette-Guérin (BCG) vaccination, which protects against
leprosy, can promote sustained changes in monocyte response to unrelated pathogens and may preferentially direct
monocytes towards an M1 protective phenotype. We previously reported that M. leprae can dampen the response of
naïve human monocytes to a strong inducer of pro-inflammatory cytokines, such as BCG. Here, we investigated the
ability of the pathogen to alter the direction of macrophage polarization and the impact of BCG vaccination on the
monocyte response to M. leprae.

Findings: We show that in vitro exposure of monocytes from healthy donors to M. leprae interferes with subsequent
M1 polarization, indicated by lower levels of M1-associated cytokine/chemokines released and reduced expression of
M1 cell surface markers. Exposure to M. leprae phenolic glycolipid (PGL) 1, instead of whole bacteria, demonstrated a
similar effect on M1 cytokine/chemokine release. In addition, we found that monocytes from 10-week old BCG-vaccinated
infants released higher levels of the pro-inflammatory cytokines TNF-α and IL-1β in response to M. leprae compared to
those from unvaccinated infants.

Conclusion: Exposure to M. leprae has an inhibitory effect on M1 macrophage polarization, likely mediated through
PGL-1. By directing monocyte/macrophages preferentially towards M1 activation, BCG vaccination may render the cells
more refractory to the inhibitory effects of subsequent M. leprae infection.
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Background
Macrophages play a central role in the pathogenesis of
leprosy, a chronic debilitating disease caused by Mycobac-
terium leprae. Monocyte/macrophages show a dynamic
plasticity, allowing them to respond to environmental
stimuli by presenting a classical (M1) or alternative (M2)
activation state [1]. M1-activated macrophages release
high levels of pro-inflammatory cytokines with enhanced
microbicidal activity; M2 macrophages produce inhibitory
cytokines and are less responsive to stimuli [2, 3]. Leprosy
presents as a spectrum of clinical manifestations, asso-
ciated with differential immune activation. While tuber-
culoid leprosy shows robust cell-mediated immunity

with predominantly M1-activated macrophages, leproma-
tous disease is characterized by strong humoral immunity
and macrophages show an M2 phenotype [4, 5].
Bacille Calmette-Guérin (BCG) vaccination protects

against leprosy and is associated with reduced burden of
unrelated diseases, suggesting non-specific protection
that may involve shaping innate immunity [6–8]. BCG
vaccination has been shown to induce sustained changes
in the phenotype of circulating monocytes, with greater
pro-inflammatory cytokine production [9]. Moreover,
ex vivo stimulation of peripheral blood mononuclear
cells (PBMC) from 10-week old infants vaccinated at
birth with BCG, revealed a gene expression signature simi-
lar to an M1 macrophage profile with down-regulation of
M2-associated genes [10].
We previously reported that stimulation of naïve

monocytes from healthy donors with M. leprae alone, or
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M. leprae followed by BCG, induced the release of cyto-
kine/chemokines that are associated with negative regu-
lation of inflammation [11]. M. leprae itself was a poor
inducer of the pro-inflammatory cytokine TNF-α, consist-
ent with other reports [12]. However, when naïve mono-
cytes were first stimulated by BCG and then exposed to
M. leprae, the cells produced a pro-inflammatory cytokine
profile matching that of BCG alone [11]. Here, we
investigated the ability of M. leprae to interfere with
M1 maturation of monocyte induced by exposure to
IFN-γ and M2 maturation induced by exposure to IL4/
IL13 in vitro. We also tested whether BCG vaccination,
by favoring an M1 phenotype, may render the cells re-
sistant to the inhibitory effects of M. leprae.

Methods
Reagents
Mycobacterium leprae Thai-53 from the National Hansen’s
Disease Programs Laboratory Research, Louisiana State
University, Baton Rouge (American Leprosy Missions and
the Society of St. Lazarus) [13–15] and BCG from Trudeau
Institute (Mycobacterial Culture Collection No. 1011) were
prepared as described [11]. Purified M. leprae PGL-1,
obtained through the NIH Biodefense and Emerging
Infections Research Resources Repository NIAID, NIH:
NR-19342, was used as described [16]. Peripheral blood
mononuclear cells (PBMCs) from 10-week old infants

unvaccinated (N = 18) or BCG-vaccinated at birth (N = 20)
were provided by Dr. Willem Hanekom, University of Cape
Town, South Africa.
These studies were approved by the Institutional Review

Boards of Rutgers University and the University of Cape
Town (Pro2012001418, Pro0120110233).

Monocyte preparation/stimulation
PBMCs were isolated from buffy coat (New Jersey Blood
Center) of healthy donors; monocytes were purified using
anti-CD14 antibody-conjugated magnetic beads (Miltenyi
Biotec, Auburn, CA) and allowed to adhere before treat-
ment [11]. For M1 polarization, monocytes were exposed
to IFN-γ (10 ng/ml) for 24 h, then stimulated with LPS
(100 ng/ml) for 19 h [3, 17]. M2 polarization was achieved
by treatment with IL-4/IL-13(10 ng/ml each) for 24 h
[18, 19]. To determine the impact of M. leprae, cells were
exposed to M. leprae at multiplicity of infection (MOI) 5:1
or 20:1 (bacilli:cells) for 5 h prior to IFN-γ priming (M1)
or IL-4/IL-13 treatment (M2). Cell viability was confirmed
by trypan blue exclusion (Life Technologies, CA). Con-
trols included: M1 or M2 polarization alone, M. leprae-
stimulation alone, and unstimulated/untreated cells.
Monocytes were isolated from infant PBMCs by ad-

herence [11], plated in 96-well plates (1x105 cells/well)
in RPMI 1640/20 % human serum, and exposed to M.
leprae (MOI 5:1) or culture medium alone.

Fig. 1 M. leprae and its lipid component PGL-1 alter the release of cytokines and chemokines from M1 polarized monocytes. CD14+ cells were
polarized towards M1 phenotype (M1) or pre-exposed for 5 h to the following: a-b M. leprae (MOI 5:1, Lep5 or 20:1, Lep20), c PGL-1 (50 μg/mL)
or cultured in medium alone (UN). Cell supernatants were collected at 48 h and cytokines/chemokines analyzed. Results are the mean ± Sem:
a-b 8 experiments (8 independent donors); and c 6 experiments (6 independent donors) performed in duplicate. A 2-tailed paired t-test was
used for statistical analysis (*P ≤ 0.05, relative to M1 cells)
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Analysis
Cell supernatants were removed after 48 h (M1) or 24 h
(M2) and probed using a multiplex human cytokine/che-
mokine panel (Bio-Rad, Hercules, CA) according to
manufacturer’s instructions. Data/statistical analysis were
done as described [16]. Cells were detached with EDTA
(20 mM in PBS), washed with PBS, incubated with
fluorescently-labeled antibodies against: CCR7, HLA-
DR, CD80, CD86, and CD40 (BD Bioscience) (M1) or
CD23 (M2), and analyzed on a FACSCalibur (BD Bio-
sciences) using CellQuest (BD Biosciences) and FlowJo
(Tree Star) software. Greater than 2,000,000 events per
sample were analyzed.

Results and Discussion
M1 polarized monocytes (positive control) released high
levels of TNF-α (mean 123.4 ± 17.0 ng/ml), IL-6 (152.1 ±
175.3 ng/ml), IL-1β (0.3 ± 0.07 ng/ml), IL-12p70 (2.1 ±
0.8 ng/ml), MCP-1 (6.2 ± 2 ng/ml), IP-10 (121 ± 18.9),
Rantes (11.6 ± 2.3 ng/ml), MIP-1α (22.5 ± 3.2 ng/ml) and
MIP-1β (88.7 ± 26.7 ng/ml) compared to unstimulated/
untreated cells. Exposure of cells to M. leprae (MOI 5:1)
prior to M1 polarization significantly reduced levels of

IL-6, IL-1β and IL-12p70 by 19 % ± 27, 47 % ± 25, and
46 % ± 20, respectively, compared to M1 controls
(Fig. 1a). Pre-stimulation with M. leprae at higher
MOI (20:1) led to further reduction; IL-6, IL-1β and
IL-12p70 were reduced by 36 % ± 32, 62 % ± 28 and
60 % ± 25, respectively. TNF-α was also significantly
lowered by 22.2 % ±5.0 in response to M. leprae pre-
stimulation, but only at higher MOI. In contrast,
MCP-1 and IP-10 levels were significantly increased
(P ≤ 0.0001 and P ≤ 0.05, respectively) by M. leprae
(MOI 5:1) pre-stimulation compared to M1 controls
(Fig. 1b). While M. leprae at the higher MOI further
increased levels of MCP-1 (P ≤ 0.001), IP-10 levels were
not significantly different at the two MOIs (Fig. 1b). No
consistent differences were seen in Rantes, MIP-1α and
MIP-1β (data not shown), suggesting that the impact of
M. leprae on M1 polarization was selective. The inhibitory
effect of M. leprae on M1 polarization observed here may
involve interference with IFN-γ signaling, as described in
monocyte/macrophages exposed to Mycobacterium tuber-
culosis and in M. leprae-infected nude mice [20–22].
When monocytes were pre-exposed to PGL-1, instead of
whole bacteria, the results were even more dramatic

Fig. 2 Effect of M. leprae on M1 surface marker expression. CD14+ cells were seeded in 24-well plates at the concentration of 5x105/well and
polarized (M1), or exposed to M. leprae at MOI 5:1 for 5 h prior to polarization (Lep5/M1). Additional conditions included stimulation of monocytes
with M. leprae at MOI 5:1 (Lep5) and cells in culture medium alone without stimulation (UN). Changes in the percentages of CCR7+ and CD40
+ cells were evaluated. A two-tail paired Student’s t-test was used for the analysis. Results are representative of 6 experiments (6 individual
donors); Histogram of one representative experiment. Dark gray: unstimulated cells; light gray: M1 cells; black line: Lep5/M1. *P ≤ 0.05; **P ≤ 0.001;
***P ≤ 0.0001
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(Fig. 1c). M1 polarized controls released high levels of
TNF-α (mean 24,243 ± 7,182 pg/ml), IL-6 (50,348 ±
8913 pg/ml) and IL-1β (75.5 ± 23.2 pg/ml), which were
significantly reduced by PGL-1 pre-exposure (TNF-α:
6.7 ± 3.9 pg/ml; IL-6:18.3 ± 3.9 pg/ml; IL-1β:12.6 ±
2.0 pg/ml). PGL-1 alone induced cytokine levels com-
parable to unstimulated/untreated controls. These re-
sults support previous reports that PGL-1 is an
important determinant in M. leprae-monocyte interac-
tions [16, 23, 24].
M1 polarization also resulted in significantly increased

percentages of cells expressing the surface markers
CCR7 and CD40, relative to unstimulated/untreated
controls. When monocytes were pre-exposed to M.
leprae at low MOI, the percentages of CCR7+ (P ≤ 0.001)
and CD40+ (P ≤ 0.05) cells were reduced compared to
M1 polarization alone (Fig. 2). Pre-stimulation with M.
leprae at higher MOI did not result in further reduction
(data not shown). HLA-DR+, CD80+ and CD86+ M1 cell
percentages were unaffected by M. leprae pre-stimulation.
The mean fluorescence intensities (MFI) of CCR7, CD40
and CD80 in M1 cells were also significantly reduced by
M. leprae pre-exposure (Table 1). M. leprae alone was
comparable to unstimulated/untreated controls.
In contrast, the impact of M. leprae on expression of

M2 macrophage markers was minimal. Pre-stimulation
with M. leprae increased the MFI of CD23 (295 ± 116
and 388.5 ± 153 at MOI 5:1 and 20:1, respectively) over
M2 polarization alone (242.7 ± 108), with low levels pro-
duced by unstimulated/untreated cells (24.9 ± 12.3), and
had no effect on IL-1Ra and IL-10 (data not shown).
Thus, the effect of M. leprae on monocytes is primarily
due to inhibition of M1 activation and does not appear
to significantly affect M2 polarization.
Finally, we compared the effect of M. leprae on mono-

cytes from 10-week old unvaccinated or BCG-vaccinated
infants (Fig. 3). Levels of TNF-α and IL-1β released in
response to M. leprae were significantly higher in mono-
cytes from vaccinated infants than those from unvaccin-
ated infants, while IL-6 and MCP-1 showed trends

towards higher levels in vaccinated versus unvaccinated
infants. These results demonstrate that in vivo activation
of monocytes due to BCG vaccination may render the
cells refractory to the inhibitory effects of M. leprae.

Conclusion
Exposure to M. leprae can alter the functional capacity
of monocytes, which may diminish the efficacy of the
host response to subsequent stimuli. Our results support
increasing evidence suggesting that the innate immune
response may be shaped by prior history of exposure,
which could also explain the protection afforded by
BCG vaccination against M. leprae and other unrelated
pathogens.

Abbreviations
BCG: Bacille Calmette-Guérin; PGL-1: Phenolic glycolipid 1; PBMC: Peripheral
blood mononuclear cells; M1: Classical macrophage activation;
M2: Alternative macrophage activation; TNF-α: Tumor necrosis factor alpha;
IL-1β: Interleukin 1 beta; IL-12p70: Interleukin 12p70; IL-6: Interleukin 6;
MCP-1: Monocyte chemotactic protein 1; IP-10: Interferon gamma-inducible
protein 10; Rantes: Regulated on activation, normal T cell expressed and
secreted; MIP-1α: Macrophage inflammatory protein 1 alpha; MIP-
1β: Macrophage inflammatory protein 1 beta; IFN-γ: Interferon gamma;
MOI: Multiplicity of infection; CCR7: C-C chemokine receptor type 7; HLA-DR: Human
leukocyte antigen - antigen D related; CD40: Cluster of differentiation 40;
CD80: Cluster of differentiation 80.

Table 1 M. leprae effect on the MFI of M1 surface markers

Phenotypic markers

CCR7 CD40 CD80

M1 cells 248.0 ± 31.7 51.6 ± 6.3 765.0 ± 64.2

Lep5 (5 h)/M1 167.1** ± 22.6 40.4* ± 6.5 681.9 ± 77.6

Lep20 (5 h)/M1 152.2* ± 7.9 46.3 ± 7.8 591.0* ± 70.1

Unstimulated cells 44.3** ± 1.7 6.5*** ± 0.3 16.6*** ± 2.8

Lep5 48.4** ± 1.6 7.8*** ± 0.3 20.3*** ± 2.8

Lep20 49.3** ± 1.4 7.8** ± 0.4 25.3*** ± 3.3

The values represent the mean MFI ± Sem of 4–7 independent experiments
(independent donors) for each condition. The statistical significance is shown
as compared to the M1 cells. Lep5 (M. leprae MOI 5:1); Lep20 (M. leprae MOI
20:1).*P ≤ 0.05; **P ≤ 0.001 and ***P ≤ 0.0001

Fig. 3 Differential TNF-α and IL-1β response to M. leprae stimulation
of monocytes isolated from 10-weeks old BCG-vaccinated and
unvaccinated infants. Monocytes were isolated from PBMCs of
10-week old infants, unvaccinated or BCG-vaccinated at birth,
and stimulated for 24 h with M. leprae. Data are expressed in pg/ml
minus the value of the corresponding unstimulated controls. A 2-tailed
paired t-test was used for statistical analysis between cells stimulated
with M. leprae. *P ≤ 0.001; δP ≤ 0.05
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