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Abstract

Background: MMP-9 is crucial for a normal immune response, but excessive release of this enzyme leads to severe
tissue damage. Listeria monocytogenes (LM) is an opportunistic food-borne pathogen causing listerosis, meningitis
and sepsis. Heat killed Listeria monocytogenes (HKLM) activates immune system and leads production of cytokines
and chemokines. However, nothing is known about the involvement of HKLM in MMP-9 regulation. Therefore we

by Western blotting.

damage caused by infection or chronic inflammation.

investigated the role of HKLM in the regulation of MMP-9 gene expression in THP-1 cells.

Methods: Commercially available heat killed Listeria monocytogenes was used in this study. HKLM-induced MMP-9
expression was assessed with quantitative real-time qPCR and ELISA. Action of HKLM in different signaling pathways
were studied by using THP-1-XBlue™ cells (THP-1-cells with NF-kB/AP-1 reporter construct), THP-1-XBlue™-defMyD cells
(MyD88™~ THP-1 cells), anti-TLR2 mAb and pharmacological inhibitors. Phospho and total proteins were determined

Results: Increased MMP-9 production (MRNA: 395-Fold; Protein: 8141 pg/ml; P < 0.05) was observed in HKLM stimulated
THP-1 cells as compared to the un-stimulated THP-1 cells. This production of MMP-9 was completely abrogated by
anti-TLR2 blocking mAb (P = 0.0024). Furthermore, THP-1-XBlue™-defMyD cells were unable to produce MMP-9 in
response to HKLM. HKLM- induced activation of NF-kappaB/AP-1 was also observed in THP-1-XBlue™ Cells. In addition,
inhibitors of JNK (SP600125), MEK/ERK (U0126; PD98056), p38 MAPK (SB203580) and NF-kappaB (BAY 11-7085, Triptolide
and Resveratrol) significantly suppressed (P < 0.05) HKLM-stimulated MMP-9 expression.

Conclusion: Our results indicate that HKLM activates TLR2 and NF-kB/AP-1 signaling pathways, leading to up-regulation
of MMP-9 production in THP-1 cells. Thus, MMP-9 could be an appropriate therapeutic target to stop severe tissue

Introduction

Listeria monocytogenes is a Gram-positive foodborne patho-
gen that is widely distributed in nature, occurring in soil,
water, various food products, animals, and humans [1]. In-
fection by Listeria monocytogenes occurs almost exclusively
after ingestion of contaminated food [2]. Immunocomprom-
ised individuals, neonates, pregnant woman, elderly persons,
and patients suffering from transplantation events are most
susceptible to infections. Listeriosis causes invasive disease
including septicemia and meningitis [3]. Although the
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listeriosis incidence is low, the high mortality rates (about
24%) due to septicemia and meningitis make L. monocyto-
genes one of the most deadly human food-borne pathogens
[4]. Immediate immune responses are triggered during LM
infection. Innate immunity to LM is mediated via toll like
receptors or nucleotide-binding oligomerization domain
(NOD)-like receptors (NLRs) [5]. Toll-like receptors (TLRs)
have been shown to play an important role in the host’s in-
nate immune responses to microbial infections through the
induction of proinflammatory cytokines, chemokines, and
type [ interferons by macrophages and dendritic cells [6,7].
Member of the TLR family, namely TLR2 has been shown
to be critical in the initiation of innate immune responses to
LM infection in the mouse model [8,9]. Recognition of a
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microbial invasion through the TLRs triggers the activation
of signaling pathways, resulting in the recruitment of several
adaptor proteins to the TIR domain. However, myeloid
differentiation factor 88 (MyD88) is a key adaptor protein
which is common to almost all TLRs except TLR3 [10].
MyD88 activates in turn IL-1 receptor—associated kinases
(IRAK) family members and tumor necrosis factor-alpha re-
ceptor—associated factor 6 (TRAF6) [11,12]. These adaptor
proteins have essential role in the activation of NF-kB and
mitogen-activated protein kinase (MAPK) pathways [13-18].
NE-kappaB and AP-1 transcription pathways are involved in
the regulation of inflammatory mediators that trigger the
migration of the inflammatory cells into the tissue. Inflam-
matory cells migration into tissues is dependent on several
events including adherence to endothelial cells and penetra-
tion through the vessel wall into the extracellular matrix
[19-21].

Matrix metalloproteinases (MMPs) form a family of zinc-
containing proteases that degrade all extracellular matrix
components and have an important role in tissue remodel-
ing and immunomodulatory functions [22,23]. As gelatin is
a major component of extra- cellular matrix (ECM) and in
view of their collagen type IV-specific degradation capacity,
MMP-9 plays a key role in ECM breakdown. MMP-9 is
predominantly secreted by monocytes which are central
cells in developing immune response to infection. The pro-
duction of MMP-9 by monocytes is of interest in the con-
text of facilitating leukocyte infiltration into infected sites
through degrading type IV collagen in vascular basement
membranes [24]. MMP-9 production is tightly controlled at
the level of gene transcription and its unrestricted release/
activity may contribute to host tissue damage during infec-
tion. Elevated levels of MMP-9 were found in different in-
flammatory and infectious diseases [25-28]. MMP-9 gene
expression in monocytic cells is regulated by different cyto-
kines, including TNF-alpha IL-1beta, IL-18 and microbial
components [29-31].

Previous work has shown that Heat killed listeria mono-
cytogenes (HKLM) activates immune system by regulating
the expression of cytokines (IL-1p, IL-6, IL-8, IL-12 and
TNFa and chemokines [32-34]. However, nothing is
known about the regulation of MMP-9 by HKLM in
monocytic cells. In this study we therefore looked at the
influence of HKLM on monocyte production of MMP-9.
We show that HKLM induces MMP-9 in the monocytic
cell line THP-1 via activation of MAPK and NF-kappaB.
MMP-9 secretion was blocked by neutralizing TLR2.
MyD88-/- cells abrogate the HKLM stimulated MMP-9
secretion.

Materials and methods
Cell culture and stimulation
Human monocytic leukemia cell line THP-1 was pur-
chased from American Type Culture Collection (ATCC)
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and grown in RPMI-1640 culture medium (Gibco, Life
Technologies, Grand Island, USA) supplemented with 10%
fetal bovine serum (Gibco, Life Technologies, Grand Island,
NY, USA), 2 mM glutamine (Gibco, Invitrogen, Grand
Island, NY, USA), 1 mM sodium pyruvate, 10 mM HEPES,
100ug/ml Normocin 50 U/ml penicillin and 50 pg/ml
streptomycin (P/S; (Gibco, Invitrogen, Grand Island, NY,
USA), and incubation at 37°C (with humidity) in 5% CO,.
THP-1-XBlue cells stably expressing a secreted embryonic
alkaline phosphatase (SEAP) reporter inducible by NF-kB
and AP-1 were purchased from InvivoGen (InvivoGen, San
Diego, CA, USA). THP-1-XBlue cells show similar response
to HKLM purchased from InvivoGen, (San Diego, CA,
USA) as THP-1 cells. All the experiments were performed
with THP-1-XBlue cells at a cell density of 1x 10° /ml in
12-well plates. THP-1-XBlue™-defMyD cells (cells deficient
in MyD88 activity; MyD88-/— THP-1 cells) were also pur-
chased from InvivoGen (InvivoGen, San Diego, CA, USA).
THP-1-XBlue cells were cultured in complete RPMI
medium with the addition of zeocin (200 pg/ml) (InvivoGen,
San Diego, CA, USA) to select for cells expressing the SEAP
-NF-kB/AP-1 reporter. THP-1-XBlue™-defMyD cells were
cultured in complete RPMI medium with the addition of
Zeocin (200ug/ml) and HygroGold (100ug/ml) (InvivoGen,
San Diego, CA, USA).

Prior to stimulation, THP-1 cells were transferred into
normal medium and plated in 12-well plates (Costar, Corn-
ing Incorporated, Corning, NY, USA) at 1 x 10° cells/well
cell density unless indicated otherwise. In dose—response ex-
periment, the following HKLM concentrations were used to
stimulate THP-1 cells: 1-9x10” particles/ml. In subsequent
experiments, the optimal (non-cytotoxic) concentration of
HKLM (3x107 particles/ml) or TNF-alpha (25 ng/ml) were
used to stimulate cells for 24 hr at 37°C. Cells were
harvested for RNA isolation and conditioned media were
collected for measuring MMP-9 secretion levels and SEAP
activity. Conditioned media were collected and stored
at —80°C.

Quantification of NF-kB/AP-1 activity

THP-1 XBlue cells (InvivoGen, San Diego, CA) are THP-1
cells stably transfected with a reporter construct, expressing
a secreted embryonic alkaline phosphatase (SEAP) gene
under the control of a promoter inducible by the transcrip-
tion factors NF-kB and AP-1. Upon stimulation, NF-kB
and AP-1 are activated and subsequently the secretion of
SEAP is promoted. Levels of SEAP were detected in the
conditioned media after 4 hr incubation of supernatants
with Quanti-Blue medium (InvivoGen, San Diego, CA,
USA) at 650 nm wave length by ELISA reader.

Real time quantitative RT-PCR
Total RNA was extracted using RNeasy Mini Kit (Qiagen,
Valencia. CA, USA). The cDNA was synthesized using
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1 pg of total RNA using high capacity cDNA reverse tran-
scription kit (Applied Biosystems, Foster city, CA, USA).
50 ng ¢cDNA was used in each real-time PCR reaction. For
real-time polymerase chain reaction (PCR), complementary
DNA was amplified with Inventoried TagMan Gene Expres-
sion Assay products (MMP-9: Hs00234579_m1; GAPDH:
Hs03929097_g1) containing two gene-specific primers and
one TagMan MGB probe (6-FAM dye-labeled) using a Taq-
Man® Gene Expression Master Mix (Applied Biosystems,
Foster city, CA, USA) in a 7500 Fast Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). The
mRNA levels were normalized against GAPDH mRNA
and the amounts of MMP-9 mRNA relative to control
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were calculated with AACt-method [35]. Relative mRNA
expression was expressed as fold expression over average
of control gene expression. The expression level in control
treatment was assumed to be 1. Values are presented as
mean + SEM. Results were analyzed statistically; P < 0.05
was considered significant.

ELISA for secreted MMP-9 and TIMP-1 in cell culture
supernatants

Concentrations of MMP-9 and TIMP-1 in cell culture su-
pernatants were measured using sandwich ELISA according
to the manufacturer’s instructions (R&D systems, Minneap-
olis, USA).
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Figure 1 HKLM up-regulates MMP-9 expression in THP-1 cells. THP-1 cells were stimulated with HKLM different concentrations (1-9x10” particles/ml). Cells
and culture supernatants were collected. Total cellular RNA was isolated and MMP-9 mRNA was quantified by real time PCR. Relative mRNA expression
was expressed as fold expression over average of gene expression in vehicle-treated cells. The average gene expression level in vehicle-treated cells was
assumed to be 1 (A). Secreted MMP-9 levels were measured in supernatants by ELISA (B). THP-1 cells were stimulated with HKLM (3x10”/ml), TNF-alphalph
(25 ng/m; positive control) and vehicle (H,O; 2ul/ml) for 24 hrs. Cells and culture supernatants were collected. MIMP-9 mRNA was quantified by real-time
PCR (D) and secreted levels of TIMP-1 and MMP-9 were measured in the supernatants by ELISA (C & E). SEAP reporter activity (degree of NF-kB /AP-1
activation) was determined in supernatants as described in materials and methods (F). The results obtained from three independent experiments are
shown. The data are presented as mean + SE. An asterisk (¥) represents P-value of <0.05.
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Western blotting

Cellular lysates were prepared as described previously
[7,36]. Briefly THP-1 cells were incubated for 30 min with
lysis buffer (Tris 62.5 mM (pH 7.5), 1% Triton X-100, 10%
glycerol). The lysates were then centrifuged at 14000 rpm
for 10 min and the supernatants were collected. Protein
concentration in the lysates was measured by Quickstart
Bradford Dye Reagent, 1x Protein Assay kit (BioRad La-
boratories, Inc, CA). Protein (20 pg) samples were mixed
with sample loading buffer, heated for 5 min at 95°C and
were resolved on SDS-12% SDS-PAGE and transferred to
immobilon polyvinyldifluoride (PVDF) membranes (Bio-
Rad Laboratories, USA) by electro blotting. The blots
were blocked with 5% non-fat milk in PBS at room
temperature and then probed with rabbit anti-human
antibodies against p-MEK1/2, pERK1/2, p-JNK, p-p38, p-
c-jun, p-IKKa/B, p-IKB, p-NF-kappaB and Beta Actin in
1:1000 dilution at 4°C overnight. All the primary anti-
bodies were purchased from Cell Signalling (Cell Signal-
ling Technology, Inc). The blots were then washed three
times with TBS and incubated for 2 h with HRP-
conjugated secondary antibody (Promega, Madison, W1,
USA). Immunoreactive bands were developed using an
Amersham ECL Plus Western Blotting Detection System
(GE Health Care, Buckinghamshire, UK) and visualized by
Molecular Imager ° VersaDoc™ MP Imaging Systems (Bio-
Rad Laboratories, Hercules, CA, USA).

Statistical analysis

Statsitical analysis was performed using GraphPad
Prism software (La Jolla, CA, USA). Data are shown as
mean + standard deviation values, unless otherwise indi-
cated. Unpaired Student t-test was used to compare
means between groups. In all cases, P value < 0.05 was
considered significant.

Results

HKLM induces MMP-9 production in THP-1 cells

It has been reported that heat killed listeria monocyto-
genes (HKLM) triggers the production of inflammatory
mediators [32-34,37]. However, MMP-9 induction by
HKLM has yet not been studied in monocytic cells. To
determine whether HKLM up-regulates MMP-9 gene
expression, THP-1 cells were treated with different con-
centrations of HKLM for 24 hrs. Cells and conditioned
media were harvested. MMP-9 gene and protein expres-
sion were induced in THP-1 cells in a dose-dependent
manner (Figure 1A & B, respectively). We further found
that HKLM concentration of 3x10” particles/ml did not
induce changes in cellular morphology and viability;
therefore, this concentration was used in all subsequent
experiments. In addition, we also confirmed that the
production of TIMP-1 protein differed non-significantly
between vehicle and HKLM (Figure 1C). MMP-9 gene
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Figure 2 Effect of TLR-2 neutralizing antibody on the induction of
MMP-9 expression by HKLM. THP-1 cells were treated anti-huTLR-2-IgA
(neutralizing mAb; Nab; 2ug/ml) or isotype-matched control antibody
(IgA) (2ug/ml) for 30 minutes before the addition of HKLM. Cells and

cell culture supermatants were collected at 24 hr after HKLM treatment.
MMP-9 mRNA was quantified by real-time PCR (A) and secreted levels
of MMP-9 were measured in the supernatants by ELISA (B). SEAP reporter
activity (degree of AP-1/NF-kB activation) was determined in the
supernatants as described in the material methods (C). Data are shown
from three independent experiments. Data are presented as mean =+ SE.

An asterisk (¥) represents P-value of <0.05.
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expression was increased at both mRNA (395 Fold; P =
0.002) and protein levels (8141 + 215 pg/ml; P =0.003)
in THP-1 cells treated with HKLM as compared to the
un-stimulated THP-1 cells. MMP-9 protein expression
induced by TNF-alpha (4195 + 157 pg/ml; P = 0.0014) as
positive control (Figure 1D & E).

Studies have revealed an essential role of NF-kappaB
and AP-1 activation in MMP-9 secretion in different cell
types by several external stimuli [38,39]. To investigate
the involvement of NF-kappaB and AP-1 in HKLM in-
duced MMP-9 gene expression, the THP-1 X-blue cells,
expressing a reporter gene SEAP driven by NF-kappaB
and AP-1 response elements, were treated with HKLM
or TNF-alpha. Elevated SEAP activity (NF-kappaB/AP-1
activation; P =0.0018) was determined in the condition
media obtained from THP-1 cells treated with HKLM as
compared to unstimulated cells (Figure 1F).

Involvement of TLR2 in HKLM induced MMP-9 production
Previous studies have shown that TLR2 can interact
with several ligands including listeria monocytogenes
[40]. Therefore, we hypothesized that the TLR2 signal-
ing pathway might be involved in HKLM-induced
MMP-9 production. To test this hypothesis, THP-1 cells
were treated with anti-TLR2-neutralizing monoclonal
antibody (a-TLR2 mAb) or a control isotype (IgA) for
30 min. The cells were then treated with HKLM and
evaluated for MMP-9 gene expression. Neutralization of
TLR2, with an anti-TLR2 mAb markedly reduced
HKLM-induced MMP-9 gene up-regulation in THP-1
cells (Figure 2A and B; P<0.05). In this condition,
MMP-9 gene expression levels were similar to those
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seen in non-treated cells, whereas there was no change
in MMP-9 expression in cells treated with the control
isotype antibody. Furthermore, consistent with the ob-
served effect of neutralization of TLR2 on the induction
of MMP-9, HKLM -induced NF-kB/AP-1 activity was sig-
nificantly reduced (P <0.05) in THP-1 cells pretreated
with anti TLR2 neutralizing antibody compared with con-
trol antibody (Figure 2C). These results reveal the absolute
requirement of TLR2-mediated signaling for MMP-9 gene
up-regulation by HKLM in THP-1 cells.

Role of MyD88 in HKLM induced MMP-9 production

We found in earlier experiments that TLR2 is required for
HKLM-mediated induction of MMP-9 production in
THP-1 cells and that only HKLM interaction with cellular
receptor on the target cells was responsible for inducing
this effect. MyD88 appears to be a key adaptor protein as
it is required for signalling by all TLRs except TLR3 [10].
To investigate the role of MyD88 in regulation of MMP-9
by HKLM, THP-1-XBlue™-defMyD cells (MyD88-/—; cells
deficient in MyD-88 activity) were incubated with HKLM
or TNF-alpha. MyD88 deficiency diminished HKLM—in-
duced MMP gene up-regulation in THP-1 cells at both
mRNA and protein levels (Figure 3A and B). In contrast,
TNF-alpha induction of MMP-9 was not affected in
MyD88-/- cells as it activates MMP-9 gene expression via
MyD88-independent pathway. Likewise, MyD-88 deficiency
also completely decreased activation of NF-kB/AP-1 follow-
ing HKLM treatment (Figure 3C). These data suggest that
MyD88 has important role in the activation of NF-kappaB/
AP-1 transcription factors for the induction of MMP-9 by
HKLM.
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Figure 3 Effect of MyD88 deficiency on the induction of MMP-9 by HKLM. THP-1-XBlue™-defMyD cells (Cells deficient in MyD88 activity) were treated
with HKLM (3x107/m), TNF-alpha (25 ng/ml) and vehicle (water; 2ul) for 24 hr. Cells and supernatants were collected. Cells were used for the isolation
of total RNA and MMP-9 gene expression was quantified by real-time PCR (A). Secreted levels of MMP-9 protein were determined in supernatants by
ELISA (B). SEAP reporter activity (degree of AP-1/NF-kB activation) was also determined in cell supernatants (C). Data are shown as mean + SE. An
asterisk () represents P-value of <0.05.
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MAPK and NF-kappaB signaling pathways are involved in
HKLM-induced MMP-9 upregulation

Because activation of MEK/ERK and MAPK/JNK signal-
ling pathways have been reported to mediate MMP-9
production [41,42], we next asked whether these mole-
cules play role in HKLM induced MMP-9 production.
Figure 4A showed that stimulation of THP-1 cells by
HKLM increased phophorylation of MEK/ERK, JNK,
p38, c-jun. As expected the Inhibitors of the MAPK
pathway (MEK/ERK or p38 or JNK) down-regulate the
expression of MMP-9 in THP-1 cells stimulated by
HKLM. The expression of MMP-9 mRNA was reduced
(Figure 4B; P<0.05) by treatment with inhibitors of ei-
ther MAPK/JNK (SB203580/SP600125) or MEK/ERK
(PD98059, U0126). Consistent with qRT-PCR results,
MMP-9 levels in culture supernatants of THP-1 cells
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were significantly suppressed (P < 0.05) after treatment with
inhibitors of either MAPKs or MEK/ERK (Figure 4C).
Given that the promoter contains the NF-kB binding site
[43,44], the lack of NF-kB activation is expected to result in
the reduced MMP-9 gene expression. Figure 5A showed
that stimulation of THP-1 cells by HKLM increased pho-
phorylation of IKK-o/p, p-IkB and NF-kappaB. The use of
NF-kB inhibitors (BAY 11-7805, Triptolide and Resvera-
trol), significantly reduced the MMP-9 gene expression
(P<0.0001) (Figure 5B and C).

Discussion

MMP-9 is essential for normal physiological conditions
but its increase in production could be involved in the
pathogenesis of various diseases such as chronic inflam-
mation, tumor cell metastasis, arthritis, obesity and in
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Figure 5 Effect of NF-kappaB pathway inhibitors on MMP-9 induction. THP-1 cells were treated with FSL-1 for different time points and cell lysates
were prepared as described in methods. Samples were run on denaturing gels. Phosphorylated IKKa/@3, IkB, and NF-kB are depicted in the upper panel
and B-actin is shown in the bottom panel (A). THP-1 cells were pretreated with NF-kB inhibitors (BAY 11-7085, 10 uM; Triptolide, 10 uM or Resveratrol,
15 uM) for 1 hr and then treated with HKLM (3x10”/ml) for 24 hr. Cells and supernatants were collected. Cells were used for the isolation of total RNA
and MMP-9 mRNA was assessed by real-time PCR (B). Secreted levels of MMP-9 protein were determined in supernatants by ELISA (C). Data are shown
as mean =+ SE. An asterisk () represents P-value of <0.05.
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the progression of various infectious diseases ([25-28].
Also, MMP involvement in the pathogenesis of central
nervous system diseases have been reported. A study re-
ported the presence of Listeria monocytogenes antigens
and MMP-7/9 in sheep brains [45]. Previously, we stud-
ied the MMP-9 production induced by FSL-1, a syn-
thetic lipoprotein derived from Mycoplasma salivarium
[46]; whereas in this study, we have demonstrated that
MMP-9 was up-regulated in monocytic cells upon ex-
posure to Heat killed Listeria monocytogenes (HKLM).
This MMP-9 up-regulation requires TLR2/MyD88-
dependent activation of NF-kB/AP-1. Our study shows
that HKLM mediated induction of MMP-9 in mono-
cytic cells is due to HKLM interaction with surface re-
ceptor on the target cells. The interaction of different
bacteria with TLRs has been shown to be decisive in the
outcome of immune responses and bacterial pathogen-
esis. For instance, TLR2 serves as the signaling receptor
for molecules such as LP, LTA, and PGN. PGN, a cell
wall component of gram positive bacteria, induces IL-6
and MMP-9 gene expression in microglia and neurtophils,
respectively 9 [47,48]. Other studies have also shown that
macrophages from TLR2-deficient mice lost the ability to
secrete the inflammatory cytokines TNF-alpha and IL-6 in
response to bacterial component from gram-positive bac-
teria [49], which suggests that interaction of the TLR on

the cells with the bacterial component is responsible, in
part, to induce immune response in the host. In the
present study, to demonstrate that TLR2 participates in
the induction of MMP-9 by HKLM, we achieved no cellu-
lar responses to the HKLM after neutralization of TLR2
on THP-1 cells. Previous studies have shown that the
cytokine production induced by gram positive bacteria in
cells of the monocytic linage depends on TLR2 stimula-
tion [50,51].

Recognition of a microbial invasion through the TLRs
triggers the recruitment and activation of several
adaptor proteins to the TIR domain. MyD88 is a key
adaptor protein and is common to almost all TLRs ex-
cept TLR3 [10]. The involvement of MyD88 is well
known in the induction of various inflammatory media-
tors. Thus, we also suggested that inducing effect of
HKLM on MMP-9 was blocked in MyD88 deficient
cells. It is noteworthy in this regard that the role of
MyD88 has provided a further evidence for the involve-
ment of the TLR2 in this induction of MMP-9. The
interaction of MyD88 with the TLR receptor promotes
the recruitment of other adaptor proteins that in turn ac-
tivates downstream kinases including NF-kB—inducing kin-
ase (NIK), IKKa/B/y, and mitogen-activated protein kinases
(MAPKs) [13-18]. In the classical pathway, activated IKK{
which is part of an IKKa/B/y complex, phosphorylates
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IKBa or IKBp leading to their proteosomal degradation. As
a result, NF-kB gets activated. In case of TLRs, che classical
NEF-«B pathway gets activated. Whereas in case of lymphoid
development, the alternate pathway is involved in which
NIK activates IKKa which phosphorylates NF-kB2 [52].
These signaling cascades thus activate multiple transcrip-
tion factors such as NF-kappaB and activator protein 1
(AP-1) [53]. Indeed, previous studies indicate that AP-1
and NF-kappaB have binding sites in the MMP-9 promoter
region and play important role in MMP-9 gene regulation
[54]. Therefore, we show the involvement of NF-kB/AP-1
activation in HKLM-induced MMP-9 gene expression in
THP-1 cells. This is also confirmed by our observations
that neutralization of TLR2 and deficiency of MyD88
blocked NF-kB/AP-1 activation along with the inhibition of
MMP-9 expression. As NF-kappaB and MAPK pathways
have been extensively studied downstream of various
inflammatory stimuli. It is well established that stimulation
of monocytes/macrophages by microbial components
induces phosphorylation of p38, ERK1/2, and c-Jun NH,-
terminal kinase (JNK). MAPKs are activated largely by bac-
terial products through TLRs and participated in the
inflammatory response induced by TLR2 activation in
monocytes/macrophages [53,55]. Our results showed that
HKLM induced phosphorylation of p38, ERK1/2, and c-Jun
NH,-terminal kinase (JNK) are involved in the regulation
of MMP-9 gene expression. Moreover, this is confirmed by
our findings that HKLM induced MMP-9 was reduced by
inhibition of MEK/ERK, JNK and p38. The involvement of
MEK/ERK as well as that of other kinases (JNK and p38) in
MMP-9 expression has been reported in other cell systems
[54,56]. Since our data shows that NF-kappaB signaling
pathways are also very effective in the regulation MMP-9
along with MAPK signaling pathways. Thus, we established
that HKLM induced phosphorylation of the IKKa/fB, IKB
and NF-kappaB. Furthermore, we found that effect of
HKLM on MMP-9 regulation was suppressed in the cells
treated with inhibitors of NF-kappaB signaling pathways.
Our results suggested that signaling pathways induced by
HKLM that regulate MMP-9 expression in monocytic cells
is also dependent on NF-kappaB signalling pathways. Many
studies have revealed an essential role of NF-kappaB and
AP-1 activation in MMP-9 secretion has been revealed in
different cell types by several external stimuli [38,39]. A few
studies support that NF-kappaB and AP-1 transcription fac-
tors are regulated by the similar intracellular signal trans-
duction cascades [57-60]. For example, in the activation of
JNK by inflammatory or stress stimuli and the nuclear tra-
slocation of NF-kappaB, the simultaneous activation of NF-
kappaB and AP-1 suggest that these transcription factors
work cooperatively [61]. Another indication of the inter-
action between AP-1 and NF-kappaB activation pathways
comes from the studies showing that the MAPK pathway
activation leads to activation of JNK and IkB kinase
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complexes [62]. This cooperative interaction between AP-1
and NF-kappaB is further supported by the presence of a
scaffold protein which was shown to be involved in the acti-
vation of JNK pathways and NF-kappaB nuclear transloca-
tion [63]. From these studies, taken together, there is
possibility that NF-kappaB and AP-1 can modulate the ac-
tivity of each other.

In summary, we have shown that TLR2 regulates the ex-
pression of MMP-9 in THP-1 cells in response to HKLM
by multiple cooperative mechanisms. In particular, we have
identified HKLM-mediated activation of MAPK, AP-1 and
NF-«kB signaling pathways as critical steps for transcrip-
tional up-regulation of MMP-9.
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