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Abstract

Ionizing radiation (IR) activates both pro-and anti-proliferative signal pathways producing an imbalance in cell fate
decision. IR is able to regulate several genes and factors involved in cell-cycle progression, survival and/or cell death,
DNA repair and inflammation modulating an intracellular radiation-dependent response. Radiation therapy can
modulate anti-tumour immune responses, modifying tumour and its microenvironment. In this review, we report
how IR could stimulate inflammatory factors to affect cell fate via multiple pathways, describing their roles on gene
expression regulation, fibrosis and invasive processes. Understanding the complex relationship between IR, inflammation
and immune responses in cancer, opens up new avenues for radiation research and therapy in order to optimize and
personalize radiation therapy treatment for each patient.
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Introduction
Radiation therapy (RT) is a treatment modality used for
many types of cancer: more than 50% of cancer patients
receive RT, often used in combination with surgery and
chemotherapy [1].
Ionizing radiation (IR) activate both pro- and anti-

proliferative signal pathways altering the homeostatic bal-
ance between survival and cell death, regulated by several
genes and factors involved in cell cycle progression, DNA
repair, inflammation and cell death induction [2].
Studies have shown that RT may reduce the incidence

of distant metastases and improve survival by controlling
locoregional recurrence [3].
An increasing amount of data suggests that there is a

direct relationship by which radiation stimulate the im-
mune system, which in turn contributes to tumour cell
death [4].
It has long been recognized that the immune system

plays a pivotal role in tumours. On the one hand, immuno-
logical factors can suppress tumour development by killing
cancer cells or inhibiting their growth. On the other hand,
immune cells are able to induce an immunosuppressive
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microenvironment that contributes to promote tumour
progression [5-7].
More precisely, inflammatory cytokines, growth factors

and proteases can affect cancer cell invasion, bystander
effect, radiation tissue complications such as fibrosis,
genomic instability and thus can greatly affect intrinsic
cellular radiosensitivity [8-10].
Recently, it has become evident that, in particular for

solid tumours, the inhibition of neoplastic cell prolifera-
tive capacity following irradiation can occur through dif-
ferent modes of cell death that could also be induced by
immunological factors (i.e. apoptosis, necrosis, mitotic
catastrophe, autophagy and senescence) [2].
The aim of this review is to describe how IR may

stimulate immunological factors to determine cell fate
by multiple pathways by providing an overview of the
main key transcription factors that modulate inflamma-
tory gene expression profile after IR exposure. We shall
also discuss the cytokine pivotal role in invasiveness and
radiation-related fibrosis, and combined radio-immune
cancer therapies. Finally, we introduce the future per-
spectives of a IORT inflammatory response evaluation in
understanding inflammatory response induced by a high
dose of radiation, in order to identify potential bio-
markers that may have a prognostic value for cancer
treatment.
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Signalling events in tumour activated by ionizing radiation
In mammalian cells, IR can elicit a multi-layered signal-
ling response by activating many pro-survival pathways
that converge to transiently activate key transcription
factors (TFs). These include the Nuclear Factor kappa B
(NF-kB) and signal transducers and activators of tran-
scription members (STATs) [11,12]. Together, these TFs
regulate a wide spectrum of genes involved in inflamma-
tion, apoptosis, invasion and angiogenesis processes, con-
tributing to confer tumour cell radioresistance [13,14].
NF-kB is an ubiquitous TF that regulates gene expres-

sion profile of more than 200 target genes that have
been shown to suppress apoptosis and to induce cellular
transformation, proliferation, metastasis, radioresistance
and inflammation in a wide variety of tumours [15]. NF-kB
has a central role in immune and inflammatory responses
because it regulates the expression of pro-inflammatory cy-
tokines and chemokines such as Tumour Necrosis Factor
alpha (TNF-α), Interleukine-1 (IL1), Interleukine-2 (IL2),
Interleukine-6 (IL6) and Monocyte Chemoattractant
Protein-1 for inflammatory cells (MCP-1) [16].
Tumour cells usually express high levels of constitutive

NF-kB [17]. IR can activate NF-kB via the Ataxia Tel-
angiectasia mutated protein (ATM) or DNA-PK prob-
ably via MEK/ERK/p90 pathway as described by Panta
et al. [18]. NF-kB pro-inflammatory responses generally
require doses of 7–10 Gray (Gy), but low dose responses
have also been observed [19]. The NF-kB activity modu-
lation increases cell growth and survival advantage also
through the activation of anti-apoptotic proteins such as
BCL-xl, BFL-1/A1, NR13 [20-23]. ATM also phosphory-
lates p53, which exerts a crucial role following IR-induced
DNA damage. As recently described, many IR- induced
genes are p53-regulated but there is evidence for a sub-
stantial p53- independent IR transcriptional response,
where NF-κB plays a contributing role to radioresistance
[2]. Like p53, NF-κB activates a variety of genes ranging
from cyclins to those involved in lipid signalling and trans-
lation [24,25]. Moreover, it was also demonstrated that
inhibition of NF-kB activity increased sensitivity of cancer
cells to the apoptotic action of different effectors or
chemo-radiotherapies [26,27]. Another pathway that plays
a key role in regulating the immune response to IR is
driven by JAK-STAT signalling. The STAT proteins are
considered to be important for cell viability in response to
different stimuli such as IR [28,29].
It has been shown that STATs can have a significant

role in tumour development and they are included
among the potential oncogenes. In normal cells, the acti-
vation of STAT proteins is transient (from a few minutes
to a few hours). However, constitutive activation of
STAT family has been detected in different tumours
[30,31]. In particular, STAT1 and STAT3 are very similar
proteins (40% identity) that can often be activated by the
same extracellular ligand (such as EGF, PDGF or IL-6).
They appear to play opposite roles in tumourigenesis:
STAT3 is considered an oncogene because it promotes
cell survival/proliferation, while STAT1 enhances inflam-
mation and immunity, triggering anti-proliferative and
pro-apoptotic responses in tumour cells [31,32].
As recently demonstrated, STAT3 is frequently acti-

vated in hematological and epithelial malignancies. This
TF induces tumour-promoting inflammation and acti-
vates pro-oncogenic pathways (in conjunction”with NF-
kB and IL-6) and up-regulates many pro-inflammatory
genes such as cyclooxygenase COX-2, IL-1b, IL-6, and
IL-8 [33-37]. STAT-3 activation has also been associated
with both chemoresistance and radioresistance. STAT-3
mediates these effects through its collaboration with
various other transcription factors, including NF-kB,
hypoxia-inducible factor-1 (HIF1), and peroxisome pro-
liferator activated receptor-gamma (PPARG). Because of
its critical role in tumourigenesis, inhibitors of this fac-
tor are being investigated for both cancer prevention
and therapy. As described by Aggarwal BB et al. in meta-
static breast cancer (BC) cells, chemoresistance is medi-
ated through the up-regulation of anti-apoptotic gene
products regulated by STAT-3 [38]. Thus, STAT-3 down
modulation can overcome chemoresistance, while its in-
hibition could promote radiation sensitivity decreasing
angiogenesis and cell survival as hypothesized by Kim
KW et al. in MDA-MB-231 BC cells [39].
STAT1 plays a dual role in cancer development. Over-

all, STAT1 induces anti-proliferative and pro-apoptotic
genes such as caspases 3, 6, 8, FAS/FASL, p21waf1, c-
myc that directly hamper tumour growth. Nevertheless,
it has been shown that inappropriate STAT1 activation
has also been observed in a variety of neoplastic cells of
BC, head and neck squamous carcinoma and others
[39,40]. Thus, STAT1 can also favour carcinogenesis and
tumour survival. In addition, Khodarev NN et al. showed
that ectopically STAT1 increased expression, can induce
a radiation resistant phenotype [41]. Furthermore, Hui Z
et al. observed that STAT1 down-regulation could sig-
nificantly increase the radiosensitivity of renal carcinoma
cell lines [42]. Thus, its role in acquired radioresistance
seems to be based not solely on its transcription activity
and needs further investigation.
In conclusion, a number of studies confirm that se-

lective inhibitors of these pro-inflammatory pathways
(NF-kB, STAT) could be associated to conventional radi-
ation or chemotherapy [26,30,43] in order to increase
their efficiency.

Cytokine production in response to ionizing radiation
RT has a significant effect on the immune system modu-
lation through the activation of cytokine cascades [44].
The analysis of cancer cytokine signature is therefore a



Di Maggio et al. Journal of Inflammation  (2015) 12:14 Page 3 of 11
topic of interest in order to understand the roles of cyto-
kines in cancer care [45-47]. Cytokines are produced by
tumour cells and tumour-infiltrating lymphocytes (TIL)
and can greatly influence cellular radiosensitivity and the
onset of tissue complications.
In vitro and in vivo cells and tissue exposure to IR

induces the expression of many cytokines and growth
factors such as: TNF-α, IL-1α, IL-1β, IL-6, type I IFN,
GM-CSF [44,48-50], IL-4, IL-5, IL-10 [51], IL-12, IL-18
[52], and TGF-β [53].
Cytokine production is time-dependent, peaking usu-

ally at 4–24 hrs after irradiation with subsequent de-
crease to baseline levels within 24 hrs to a few days [54].
In all cases, the increase of cytokines and their effects
have not yet been investigated at later times such as
72 hr after irradiation.
The balance between pro-inflammatory and anti-

inflammatory cytokines is critical in determining a positive
or a negative outcome, adverse reaction and resistance to
radiation treatment [43]. Many different factors can influ-
ence the cytokine profiles produced after radiation expos-
ure. For example, radiation dose, tissue type and the
inborn characteristics of tumour cells can influence the
local response into a pro- or anti-tumour effect [55,56]. In
addition, it is important to realize that in vivo and in vitro
cytokine expression profiles change greatly [57]. Moreover,
the pathogenesis of in vivo radiation damage has a clear
genetic basis, such as polymorphisms in cytokine genes
which contribute to the considerable diversity be-
tween individuals both in terms of efficacy and adverse
reactions [58,59].
Inflammatory reaction induced by RT is mediated by

many inflammation-related cytokine genes (e.g., TNF-a,
IL-1, IL-6, IL-8, IFN-γ, G-CSF, VEGF, and EGFR), within
minutes to hours after an exogenous stress signal
[44,50,60]. For example, elevated levels of TNF-α and
IL-1 have been found after irradiation of various human
or mammalian cells, such as alveolar macrophages or
tumour cells [61,62] while an over-production of IL-6 and
IL-8 has been described in keratinocytes, fibroblasts and
glioma cells after both X-ray or UV exposure [63-65].
Wu CT et al. demonstrated that IL-6 up regulation

was positively linked to radiation resistance while its in-
hibition enhanced the radiation sensitivity in prostate
cancer cells [66].
On the other hand, the inflammation response down-

regulation is partly due to the short half-life of the pro-
inflammatory cytokines and to the production of the anti-
inflammatory cytokines, such as IL-4, IL-10, IL-13, and
TGF-β [67,68]. These exert an anti-tumour effect, as well
as, contributing to tumour immune surveillance escaping.
To date, a few studies have evaluated the cytokine pro-

duction by cancer cells exposed to high or fractionated
dose of IR. It has been suggested that a 20 Gy ablative
dose of irradiation produces a more potent immune
response than standard fractionation (4 fractions of 5 Gy),
promoting the eradication of cancer cells [69].
Recently, Desai S and colleagues have evaluated the

cytokines secretion profile of five human tumour cell
lines. HT1080 (fibrosarcoma), U373MG (glioblastoma),
HT29 (colon carcinoma), A549 (lung adenocarcinoma)
and MCF-7 (breast adenocarcinoma), in order to com-
pare their cytokine profiles either before (basal) or after
acute (6 Gy) and fractionated doses (3 × 2 Gy) [70]. The
authors observed that the secretion of certain cytokines
was cell line-specific and that pro-inflammatory cyto-
kines (TNF-α, IL-1β, IL-6), growth factors (PDGF-AA,
TGF-α, TGF-β1) and chemokines (fractalkine, IL-8,
MCP-1, and IP-10) were highly represented in irradiated
conditioned medium (ICM) rather than immuno-
modulatory cytokines (IFN-γ IL-2, IL-3, and IL-10). In
addition, in all the cell lines studied except for MCF-7
BC, they showed that most of the cytokines increased
markedly in a dose dependent manner and that the mag-
nitude of such an increase was lower in ICM of tumour
cells collected after fractionated IR doses compared to
those collected after an acute dose [70].
In a recent study, Belletti B et al. analyzed how normal

and mammary carcinoma cell growth and motility are
affected by surgical wound fluids (WF) from patients
treated with TARGeted Intraoperative radioTherapy
(TARGIT). This technique uses a miniature X-ray source
that delivers 20 Gy as a single dose of radiation on
tumour bed. In this work, using proteomic and phospho-
proteomic analysis the authors showed that TARGIT
modified significantly the WF protein expression. In
particular, after TARGIT treatment, they observed that
various proteins including IL-6, MCP-1 and IL-8, and
STAT3-drived pathways involved in controlling tumour
cell growth and motility, were deregulated [71]. Fur-
thermore, an increase of cytokines produced by Th2 cells
(IL-13, IL-4, IL-5) able to induce the differentiation of
“tumour-promoting M2 macrophages” expressing anti-
inflammatory cytokines, such as TGF-β and IL-10 were
described [72,73]. Considering that WF stimulate prolifer-
ation, migration, and invasion of BC cell lines [74], this
work showed that a high dose of IR delivered by TARGIT
could abrogate these processes having an antitumoural ef-
fect probably through several growth factors and secreted
cytokines.
Cytokines can influence the dose-dependent IR response

by their pleiotropic effects, modulating inflammation, in-
vasiveness and fibrosis. For this reason these molecules
represent a topic of special radiobiological interest.

Cytokine-mediated radiation fibrosis
As demonstrated in previous studies, radiation therapy
could ultimately culminate in fibrosis [75], characterized
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by the deposition of collagen and other extracellular
matrix components within the stroma and by the pres-
ence of atypical fibroblasts.
The IR induced fibrotic tissue remodelling is a multi-

cellular process regulated by different cytokines such as
TGF-β1, TNF-α, IL-1, IL-4 and IL-13; chemokines such as
MCP-1, MIP-1β; angiogenic and growth factors [76-78].
There is substantial evidence that TGF-β1 is primarily

involved in normal tissue injury and plays a critical role
in the initiation, development, and persistence of radi-
ation induced fibrosis [79]. TGF-β1 belongs to a family
of secreted polypeptide growth factors sub-categorized
by function, including its three mammalian isoforms
(TGF-β1, TGF-β2, and TGF-β3). TGF-β activity is regu-
lated by the latency-associated protein (LAP), and by the
latent TGF-β binding protein (LTBP), forming a larger
complex called “the large latent complex” (LLC), which
can be activated by various physico-chemical treatments
or by proteases [80]. In particular, IR increases TGF-ß1
expression and also induces the extracellular activation
of the latent complex by proteolytic cleavage in response
to the production of reactive oxygen species generated
by radiation [81]. TGF-β signals activate the Smad pro-
teins [82], acting as both transduction proteins and tran-
scription factors, able to regulate gene expression of
various targets, including procollagen I and III [83].
Moreover, the fibroblasts activation into myofibro-

blasts is another key step in radiation fibrosis where
these cells play an active role in the synthesis and
remodelling of extracellular matrix (ECM) components,
including collagens. Myofibroblasts are specialized con-
tractile cells that cause aberrant ECM deposition by
TGF-β1 activation [84,85]. The resulting increase of matrix
proteins, such as collagen and fibronectin, decreases the
synthesis of matrix-degrading proteases, and enhances the
production of their inhibitors [63,86-88].
In line with these assumptions, Li C et al. demon-

strated that BC patients showing high plasma TGF-β1
levels have a major risk of developing post-radiotherapy
fibrosis, suggesting its predictive role in IR tumour re-
sponse [89]. In agreement with these data are those pub-
lished by Bouquet F and colleagues [90]. These authors
demonstrated that TGF-β1 inhibition increases in vitro
BC radiosensitivity and promotes in vivo tumour control
by radiation, once again highlighting the relevance of
this immune biomarker evaluation during cancer IR
treatment. Therefore, TGF-β1 would represent a poten-
tial target for molecular therapies designed to prevent or
reduce normal tissue injury after IR cancer therapy.
There is some evidence that the IL-4 and IL-13 Th2

cytokines, cooperate with TGF-β to induce fibrosis [91].
IL-4 has long been considered a potent pro-fibrotic
mediator nearly twice as effective as TGF-β [92]. This is
able to induce the ECM proteins synthesis, collagens
and fibronectin. Interestingly, the development of post-
irradiation fibrosis is also associated to increased IL-4
production [77,93]. IL-13 shares many properties and
functional activities similar to IL-4, as they show com-
mon receptor subunits (IL-4Rα), signal transduction
pathways and transcription factors (STAT-6) [94]. IL-13
triggers the fibroblasts differentiation into myofibroblasts,
induces the production of latent TGF-β1 by macrophages
and can also function as its indirect activator by up regu-
lating the expression of LAP cleaved proteins [95,96].
Finally, even the IL-1 and TNF-α pro-inflammatory

cytokines have been implicated in fibrosis development.
IL-1β is directly up-regulated by radiation and it is
known to activate other inflammation-related molecules
such as the matrix metalloproteinases (MMPs), a group
of zinc-dependent enzymes that regulate or degrade
ECM components [97]. Regarding TNF-α, many studies
have documented its role in fibrosis development [98,99].
Various strategies involving its inactivation have been de-
signed to protect normal tissue by post-radiation damage.
For example, as reported by Przybyszewska M et al. the
use of a TNF-α soluble receptor may represent a simple
method to partially neutralize TNF-α activity and prevent
radiation-induced lung injury [100]. In addition, TNF-α
expression leads to the TGF-β1 induction. These two
factors, in tandem, regulate IR induced fibrosis acting
through multiple mechanisms that need to be largely
explored [101].

Invasiveness, radiation and cytokines
Inflammatory IR response can favour cancer cells inva-
sion, providing a favorable environment for tumour pro-
motion and metastasis [8,10,102-104].
The radiation ability to increase cancer cell invasive-

ness has been reported for BC, pancreatic, rectal and
colon cancer cells [105-107]. IR can alter cell pheno-
types which in turn contribute, directly or indirectly,
to carcinogenesis and also affects the activity or abun-
dance of proteases, growth factors, cytokines, and
adhesion proteins which are involved in tissue remod-
elling [108].
Both IL-8 and IL-6 are involved in IR inflammatory

response, enhancing cancer cell invasiveness [109].
IL-8 is a member of the CXC chemokines superfamily

and has a wide range of pro-inflammatory effects. It was
initially described as a neutrophil and lymphocyte chemo-
attractant [110] but has subsequently been identified as a
pro-angiogenic agent in a wide range of human malignan-
cies [111,112]. For example, as reported by De Larco JE
et al. in BC cells the metastatic phenotype is strongly cor-
related with IL-8 expression, suggesting it as a prognostic
metastatic biomarker [113]. This chemokine is probably
up-regulated in a dose dependent-manner, as described by
Singh RK et al. in human melanoma cells and by Meeren
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AV et al. in endothelial cell lines, in tandem with IL-6 pro-
duction [114,115].
IL-6 is one of the most important pro-inflammatory

cytokine but it has also been considered to have an anti-
inflammatory role for its ability to induce IL-1 and TNF-α
antagonists [68]. IL-6 has been reported to be increased in
a variety of tumours, contributing to aggressive tumour
growth and resistance to treatment [116-119]. Circulating
IL-6 levels are positively associated to a clinical tumour
stage, lymph node infiltration, and the number of distant
metastases in BC patients [120,121]. In turn, in BC cells it
has been described that the IL-6 JAK/STAT3 pathway
could promote BC progression, metastasis, resistance to
treatment [122] and, at the same time, IL-6 induced
through STAT3 can then activate IL-6/STAT3 signalling
in neighbouring cells.
In addition, the IR induced IL-1β expression can also

favour cancer cell invasion. For example, in BC patients,
elevated IL-1β plasma levels have been shown to persist
for a few weeks after radiotherapy [123]. IL-1β is in-
volved in the enhancement of BC cell invasion induced
by radiation. As described by Paquette B et al., this cyto-
kine can also enhance cancer cell invasion acting as a
chemo-attractant agent for MDA MB-231 BC cells
[124]. The authors suggested that the effect of IL1β
on these BC cell invasiveness involves the elevation of
MMP-9 production, the induction of COX-2 expres-
sion and the prostaglandin E2 (PGE2) biosynthesis.
Moreover, some preclinical models suggest that radi-

ation activated TGF-β could contribute to metastasis
inducing the appearance of mesenchymal characteristics
[125-127]. Several lines of evidence have led researchers
to link this morphological shift during carcinogenesis to
the process of epithelial to mesenchymal transition (EMT),
which is an important step in cancer invasion and metasta-
sis [128-130]. In particular Zhou YC et al. suggested that
TGF-β mediated EMT plays a critical role in enhancing
the migratory and the invasive capabilities of the IR in-
duced cancer cells [131]. The complexity of the radiation
effects mediated by TGF-β will require further study to de-
termine whether it plays a proximal role in promoting
radiogenic carcinogenesis.
These data advocate the need of further clarification on

the ability of radiation to increase the invasiveness of can-
cer cells, probably mediated by immunological factors.

Radiation and inflammation combined cancer therapies
Nowadays, combinatorial anticancer therapy is an
established clinical practice. This is based on the principle
that stand-alone, chemo or radio-therapeutic regimens
are generally unable to control neoplastic lesions, whereas
combining therapeutic agents with dissimilar action mecha-
nisms potentially results in synergistic anti-neoplastic
effects [132-135].
IR leads to the activation of several immunological
proteins and TFs modulating the expression of numer-
ous immune mediators that may promote cancer devel-
opment. Thus, targeting the IR induced inflammatory
signalling pathways offers the opportunity to improve
the radiation therapy clinical outcomes by enhancing ra-
diosensitivity [103,136].
For example, as described in literature, the disruption

of NF-kB signalling could be associated to conventional
cancer therapies in order to increase their efficiency
[137], specifically to improve treatment programmes for
chemo-resistant and or radio-resistant cancers. Different
approaches to inhibit NF-kB activity are proposed in
various models [138-140]. It has been observed that the
IKB over-expression sensitizes human glioblastoma,
fibroblast and intestinal epithelial cells to radiations
[141]. In recent years the NF-κB inhibition by synthetic
compounds as well as nutraceuticals factors has been
approved for tumour radio-sensitization [142]. In par-
ticular the use of the herbal medicine curcumin has be-
come a useful approach due to the anti-inflammatory
properties in conjunction with low toxicity risk. Further-
more, curcumin has been shown to down-regulate the
NF-kB expression and STAT-3 phosphorylation [143].
Another relevant NF-kB mediated-response to IR DNA
damage is induced by the activation of the autocrine
TNFα-TNFR1 signalling able to cause IkB proteasomal
degradation and the final NF-kB activation. TNF-α is
both an inductor and a gene target gene of NF-kB [29,30].
Its induction could create a loop which amplifies the ef-
fects of radiation. Thus, the NF-kB inhibition results in a
complex network, either an increased apoptosis of irradi-
ated cells, or a lower TNF-α production decreasing the
therapeutic effects of radiations [137,144,145].
Radiation is also known to induce inflammation

through COX-2. COX is the key enzyme required for
the conversion of arachidonic acid to prostaglandins
[146,147]. It is a central enzyme in the inflammatory re-
sponse, its activity in cancer cells can be directly stimu-
lated by NF-kB after radiation exposure or indirectly
through some cytokines activity, such as IL-1β [124,148].
The COX-2 over-expression has been shown in patients
with various types of cancers. In particular COX-2 up
regulation is associated to higher tumour grade and dis-
tant metastases in BC [148,149]. This protein has assumed
an important role as therapeutic target for anticancer and
anti-inflammatory therapies because its inhibition by
drugs such as ascoxibs, celecoxib, and SC-236, represents
a radio-sensitization strategy [150,151].
In mammalian cells, IR can elicit the activation of

multiple targets and key TFs, including the above men-
tioned STAT3, representing a promising therapeutic tar-
get for preventing inflammation-mediated cancers [39].
In the past few years several new molecules inhibiting
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STAT3 (such as small interfering RNAs, oligonucleo-
tides, small molecules) were tested both in vitro and
in vivo approaches [152-155]. Stable transfection with
shRNA against STAT3 results in enhanced radiosensitiv-
ity of human squamous carcinoma (A431) cells [156].
Targeting of STAT1 might be a potential strategy to
sensitize cancer cells. Zhan JF and colleagues, provided
the first evidence that STAT1 signalling contributes to
radioresistance in BC initiating cells, revealing STAT1 as
a promising target to reduce radioresistance [157]. For
instance, Hui Z et al. observed that the STAT1 down-
regulation sensitizes renal cell carcinoma (RCC) to
chemotherapy and radiotherapy [42].
In addition, the previously mentioned cytokines IL-1β,

TNF-α, IL-8, IL-6 or TGF-β can influence the response
to IR, inducing inflammation, cancer cells invasiveness
and fibrosis in irradiated tissues, encouraging the hy-
pothesis of the use of specific inhibitors or drugs able to
manipulate cytokine pathways, in order to improve radi-
ation research and therapy. For example, Salem K and
colleagues have recently demonstrated that the com-
bined treatment with the two chemotherapeutic drugs
dexamethasone (Dex) and bortezomib (BTZ) attenuates
paracrine IL-6 secretion from irradiated stromal cells,
contributing to myeloma cell death and the inhibition of
therapy resistance [42]. The authors suggested that the
Dex and BTZ combined treatment may effectively eradi-
cate myeloma cells in their native bone marrow micro-
environment in patients undergoing oxidative stress-
induced therapy, since the Dex treatment effectively re-
duces IL-6 secretion from irradiated stroma and BTZ
has been shown to be effective in blunting IL-6-
mediated survival signalling in myeloma cells [42]. It will
be of particular interest to analyze the results of multiple
clinical trials that are currently evaluating the safety and
the anti-neoplastic profile of radio-immunotherapeutic
based regimens in cancer patients. Hence, the use of
specific inhibitors and the manipulation of cytokine
pathways, involved in cancer cell proliferation and me-
tastasis, are very important to improve radiation therapy
[158,159]. Pre-clinical studies have demonstrated that
combining radiotherapy with immune stimulation can
induce an anti-tumour immunity, enhancing cell death
[132-135]. In order to optimize and personalize radiation-
therapy treatment for each patient, a multi-parametric ap-
proach would be useful to identify several potential targets
that may affect radio-response.

Future perspectives of a IORT inflammatory response
evaluation
Intraoperative radiation therapy (IORT) is particularly
appealing to patients and physicians, because the proced-
ure is fast, convenient, spares normal tissue to a consider-
able extent and is able to solve some clinical problems,
like the integration with chemotherapy with respect to
conventional RT [160]. IORT differs from conventional
RT since a large dose in a single fraction during surgery is
delivered. The BC IORT treatment, according to specific
eligibility criteria, may be performed using two different
protocols: exclusive with the provision of a single radiation
dose of 21–23 Gy, corresponding to the administration of
the entire sequence of a conventional adjuvant RT or as
an anticipated boost of 9–12 Gy, followed by conventional
external RT treatment [161,162]. This potentially elimi-
nates repopulation of residual tumour cells that may occur
during wound healing before post-operative radiotherapy
can begin. IORT with electrons was associated with about
the same number of distant metastases and deaths as ex-
ternal RT, showing that distant disease control and overall
survival are much the same in two treatment groups, at
least in the short term. The continued active follow-up of
patients in medical trial will allow to reassess the safety of
IORT with electrons on the development of distant metas-
tases and death in the long term [163,164].
Most radiobiological studies on cell lines have been

performed in the dose range 1–8 Gy where cellular radi-
ation effects, including clonogenic inactivation and sur-
vival can be studied properly. However, some evidence
suggests that high single doses used in IORT may pro-
duce different effects from those seen after conventional
fraction sizes [164,165].
Few papers describe the role of inflammatory response

to high doses of IR, such as those used in IORT treat-
ments, rendering in this field the necessity of being ex-
plored and clarified. Some evidence suggests that high
single-dose regimens are more efficient than low-dose
regimens to trigger both innate and adaptive anti
tumour immunity [71]. For example, in the above men-
tioned study by Belletti et al. was demonstrated that
TARGIT treatment modified significantly the protein ex-
pression of the WF [71]. In addition, the WF from
TARGIT-treated patients showed a modified expression
of certain cytokines, and loss of the ability to induce the
activation of some intracellular signal transduction path-
ways. As above described, WF stimulate proliferation,
migration, and invasion of BC cell lines, showing that a
high dose of IR delivered by TARGIT could abrogate
these processes producing an antitumoural effect prob-
ably through several growth factors and secreted cyto-
kines [74]. It opens a novel avenue for identifying new
molecular targets and testing novel therapeutic agents
depending also to high dose delivered that need to be
further explored considering limited but encouraging
available data on this topic [166,167].
In order to highlight the molecular mechanisms in-

volved in the response/resistance to IORT treatment,
our research group is performing the study of IR effects
on BC cells subjected to high dose treatment modalities



Figure 1 Immunological response to IR. The figure displays how IR could stimulate key transcription factors modulating inflammatory gene
expression profile and cytokines involved in invasiveness and radiation related fibrosis. Targeting Nf-kB and STAT-3 IR activated, could offer the
opportunity to improve radiation therapy by enhancing radiosensitivity.
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and their correlation with genetic background and
molecular gene expression. Regarding the inflammatory
response, in particular, we are focusing our attention on
immunogenic factors induced by a high dose of radiation,
in order to identify potential biomarkers that could influ-
ence radio-resistance or down regulate BC cells invasive-
ness, as well as markers that may have a prognostic value
for cancer treatment.
Conclusion
RT has extensively been employed as a curative or pallia-
tive intervention against cancer throughout the last cen-
tury, with a varying degree of success. IR activates complex
cross-linked intracellular pathways able to define cell fate,
determining the outcome between survival and death
regulating several factors involved in inflammation,
DNA repair, cell survival or death (summarized in
Figure 1) [2]. The immune system plays a pivotal role con-
trolling tumour development, suppression or tumour pro-
gression [8]. This review represents an overview, of the
most recently available data regarding the main networks
activated after IR exposure, cytokines pivotal roles in inva-
siveness and fibrosis radiation-related and radio-immune
combined cancer therapies updates.
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