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Abstract
Background: Herpesviruses have evolved chemokines and chemokine receptors, which modulate
the recruitment of human leukocytes during the inflammatory response to infection. Early post-
infection, human herpesvirus 6A (HHV-6A) infected cells express the chemokine receptor U51A
and chemokine U83A which have complementary effects in subverting the CC-chemokine family
thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity,
the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6,
which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its
signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This
mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-
viral inflammatory response, leaving the viral chemokine unchecked.

Methods: Cell models for competitive binding assays were established using radiolabeled human
chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to
assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific
chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal
microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after
virus or human chemokine stimulation.

Results: U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM,
but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary
human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted
in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation.
This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin
mediated endocytosis previously shown with human chemokines CCL3 or CCL4.

Conclusion: U83A diverts human chemokines from signalling, but not regulatory or scavenger,
receptors facilitating their clearance, while occupying signalling receptors at the cell surface. This
can enhance virus specific inflammation, facilitating dissemination to replication sensitive leukocytes
while evading clearance; this has implications for linked neuro-inflammatory pathologies.
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Background
Human herpesvirus 6 (HHV-6) is a wide-spread blood-
borne virus, causing common childhood infections,
resulting in febrile disease with occasional rash (Exanthem
Subitum) and further serious complications, including
encephalitis [1]. There are two variants, HHV-6A and B;
HHV-6A has been linked with further neuro-inflamma-
tory disease including multiple sclerosis (MS) and
encephalopathy. HHV-6 is predominantly lymphotropic
and has evolved mechanisms for the dysregulation of
human immunity including diversion of chemokine
activities. Chemokines interact with defined receptors
expressed on specific leukocyte subsets, resulting in their
activation and migration (chemotaxis) toward a chemok-
ine gradient created by secretion from infected or dam-
aged cells. Hence, chemokines are involved in
hematopoietic cell traffic, inflammation and virus immu-
nity as they can attract antigen presenting cells to sites of
infection, mediate lymph node homing or activate
immune defence mechanisms. To overcome the chemok-
ine defence mechanism and redirect it towards enhanced
virus persistence, HHV-6 encodes two chemokine recep-
tors (U12 and U51) and one chemokine (U83) [2-5].
These are potential virulence factors in linked inflamma-
tory pathologies. Furthermore, U83 is the only HHV6-spe-
cific hypervariable gene, and therefore key for biological
differences between HHV-6 A and B strains. Laboratory
adapted strains can have mutations affecting U83 expres-
sion, but both wild-type variants can encode signal
sequences mediating chemokine secretion [2]. U83A from
HHV-6A is a high affinity broad-range yet selective agonist
for CC-chemokine receptors CCR1, CCR4, CCR5, CCR6
and CCR8, while HHV-6B U83B is a low affinity CCR2 lig-
and [2,4]. This disparity suggests U83 plays a key role in
tropism and pathology differences between variant
strains. Moreover, recent reports demonstrate HHV-6 inte-
grations in the germ line of approximately 1% of the pop-
ulation [6,7], thereby giving expression of U83 the

potential to exhibit as a human chemokine allele, not
only from widespread latent infection, but also as part of
the human genomic complement. Thus, it is important to
establish effects of U83A in an inflammatory response.

At early times post-infection, both viral chemokine U83A
and chemokine receptor U51A are expressed and exert
thorough regulation of the human CC-chemokine system
by time-controlled specific agonism, antagonism and
competition, (see Table 1) [2,8-10]. There are two ver-
sions of U83A, an immediate-early expressed spliced
form, which leads to an N-terminal truncation, U83A-N,
and a full length form, U83A, made later after virus repli-
cation, when splicing is suppressed. Both can bind chem-
okine receptors efficiently, but only U83A can signal
[2,4,11]. Here, we demonstrate that U83A has developed
the capacity to avoid clearance by scavenger chemokine
receptors and to control signalling receptors activity by
blocking their internalisation and addressing them to
caveolin enriched membrane domains. Scavenger recep-
tors are usually involved in regulation of effective chem-
okine levels and are required to dampen potentially
damaging inflammatory responses driven by chemokines
once an infection is cleared [12-14]. U83A modification
of the human chemokine response is shown in this article
to be broad and complex, as it can interfere with signal-
ling receptor function as well as avoid scavenger receptor
clearance, a mechanism that potentiates its own activity
on signalling receptors.

There are three 'atypical' or scavenger chemokine recep-
tors with roles in regulation of the chemokine system
namely D6, DARC (Duffy antigen/receptor for chemok-
ines) and CCX-CKR (chemocentryx chemokine receptor).
Both D6 and DARC clear chemokines that bind signalling
receptors CCR1, CCR2, CCR3, CCR4 and CCR5. In addi-
tion, DARC targets chemokines for receptors CXCR1 and
CXCR2. CCX-CKR seems to have a more narrow spec-

Table 1: Human chemokines and their receptors targeted by early HHV-6A infection

HHV-6A protein Bound* chemokines Displaced* chemokines Affected* signalling Receptors Affected scavenger receptors

U51A receptor CCL2 CCR2 DARC, D6
CCL5 CCR1, 3, 5 DARC, D6**
CCL7 CCR1, 2, 3 DARC, D6
CCL13 CCR1, 2, 3 DARC, D6
CCL11 CCR3 DARC, D6
CCL19 CCR7 CCX-CKR
XCL1 XCR1 -

**U83A chemokine CCL3, 5 CCR1 DARC**, D6**
CCL17, 22 CCR4 D6
CCL3, 4, 5 CCR5 DARC**, D6**
CCL20 CCR6 -
CCL1 CCR8 -

*references [2,5,8-10], **: shown in this paper, -: unknown
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trum, comprising chemokines which bind receptors
CCR7, CCR9 and CXCR5 [12,15] (Table 1). Signalling
receptors respond to human chemokines as well as viral
chemokine U83A binding by inducing G-protein activa-
tion, increasing intracellular calcium levels, and various
signalling cascades leading to cell polarisation, cytoskele-
tal changes, and chemotaxis. We have shown previously
that U83A is able to block signalling receptor function by
stopping their endocytosis via clathrin coated pits [8].
This effect was specific, since rapid clathrin-linked endo-
cytosis of transferrin continued in the presence of U83A,
and also CCL4 induced CCR5 in the absence of U83A.
Here we show that U83 interferes with chemokine recep-
tors activities via induction of their co-localisation rather
with caveolin-1, in a delayed endocytic pathway. In con-
trast to signalling receptors, scavenger receptors bind
chemokine efficiently, but do not induce known intracel-
lular signalling pathways. Instead there is chemokine
sequestration, internalisation, degradation, or re-localisa-
tion through transcytosis [12,15-17]. D6 and DARC bind
chemokines with specificities similar to U83A, thus they
are investigated here and compared to modulatory effects
on CCR5 signalling.

Methods
Receptor binding
COS-7 cells transfected with indicated receptors as
described [2] (1 × 106), were incubated in Binding buffer
(RPMI 1640, 0.1% BSA, and 20 mM HEPES, pH 7.4) for 2
h at 4°C with 125 pM of 125I radiolabelled chemokine
(Perkin Elmer, specific activity: 2200 Ci/mM) in absence
or presence of increasing concentrations of cold competi-
tor viral (U83A or U83A-N) [2] or human chemokines
(R&D Systems Europe Ltd., Abingdon, UK). After 2 h
incubation on ice, cells were separated from unbound
chemokine by microcentrifugation though a phthalate oil
cushion (1.5 parts dibutylphthalate to 1 part bis(2-ethyl-
hexyl)phthalate) as described [2,4], with bound radioac-
tivity counted with a gamma counter. Data and statistical
analyses used Prism 0.1.53 software (GraphPad).

Internalisation assay
CCR5 expressing cells, MAGI-CCR5E [8], were incubated
for 10 minutes at 37°C in absence or presence of 100 nM
of U83A, washed in Binding buffer and incubated at 37°C
and 5% CO2 for 30, 60 and 120 minutes before stimula-
tion by 100 nM of CCL4 for 10 minutes or buffer only for
unstimulated negative control. Cells were washed then
resuspended in FACS buffer PBS, 0.1% BSA) and Fc
blocked using 1 μg of human IgG/105 cells for 15 minutes
at room temperature. Cells were then incubated at 4°C
with fluorescein isothiocyanate, FITC, linked-CCR5 anti-
body (FAB 182F; R&D systems) for 30 minutes, washed
three times with ice cold FACS buffer, fixed with 4% PFA
and CCR5 surface expression determined as described [8]

using a FACS calibur flow cytometer (BD Biosciences,
Oxford, UK) and results analysed with FlowJo (Tree Star
Inc.). Matching isotypes (mouse IgG2B) were used as neg-
ative controls and results are expressed as percentage of
expression at time 0 for each treatment and subsequent
incubation time.

Chemotaxis assay
Chemotaxis was assayed using 96 well microchemotaxis
chambers (ChemoTx, Neuroprobe, Gaithersberg, MD,
USA) as described [8] with human donor peripheral
blood mononuclear cells (PBMC) supplied from healthy
laboratory volunteers, with local ethical committee
approval, using anonymous coded samples (one donor
per experiment). PBMC were purified as described [8]
using EDTA anti-coagulated blood centrifuged over a His-
topaque 1077 cushion (Sigma Aldrich, Irvine, UK) with
cells collected from the interphase, then washed twice
with phosphate buffered saline. Cells were resuspended in
10 ml RPMI, 10% fetal calf serum and used either imme-
diately or after culture in ultra-low attachment tissue cul-
ture plasticware (Corning, NY, USA) for 3 days as
described [8]. Chemokines were diluted in migration
buffer, HBSS (Invitrogen, Paisley, UK) with 0.1% BSA
(Sigma Aldrich, Irvine, UK) and added to the bottom
chambers, including wells with buffer only negative con-
trol. A 5 μm filter was placed on top and cells resuspended
in the same buffer were layered on the top filter mem-
brane, then cultured for 1.5 hours at 37°C, 5% CO2. Cells
were then gently wiped from the top membrane and the
plate centrifuged for 2 minutes. Migrated cells in the bot-
tom chambers were pooled from 8 wells per treatment
and assayed for CCR2 and CCR5 expression by flow
cytometry as above, with FITC-CCR5 antibody and phyco-
erythrin, PE, linked CCR2 antibody (FAB 151P) with iso-
type controls (FITC-mouse IgG2B IC004F and PE-mouse
IgG2B IC004P) (R&D Systems). Chemotaxis assays were
in triplicate from three independent assays of different
donor cells.

Confocal microscopy
As described previously [8], U373-MAGI-CCR5E cells
were grown on coverslips for 24 hours then starved in
serum-free medium for 30 minutes at 37°C, 5%CO2.
After one washing in pre-warmed serum-free medium at
37°C, the cells were incubated with chemokines for 10 or
30 minutes. Cells were then permeabilized, by treatment
with 0.05% saponin in 0.5% BSA-PBS for 10 minutes and
then labelled with a buffer containing tetramethylrhod-
amine B thioisocyanate, TRITC-anti-human caveolin pol-
yclonal antibody (Sc894, Santa Cruz Biotechnology Inc.,
CA, USA) and FITC-anti-human CCR5 monoclonal anti-
body (R&D Systems, UK) as described [8]. Next, the
labelled cells were washed three times in ice-cold PBS con-
taining 0.5% BSA, followed by fixation in 3% paraformal-
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dehyde for 10 minutes. After three washings in ice-cold
PBS containing 0.5% BSA, free aldehyde groups were
quenched with 50 mM NH4Cl in PBS for 10 minutes. The
coverslips were washed three times in PBS and then
mounted using Vectashield mounting solution contain-
ing DAPI for nucleus detection (Vector Laboratories, Bur-
lingame, CA, USA). Cells were examined using Z-stack
sections (at 0.39-μm interval), and pictures acquired on a
Zeiss LSM 510 Axioplan microscope with a Plan-Apochro-
mat 63×/1.4 oil objective by an AxioCam with magnifica-
tion ×630 under oil immersion (Zeiss, Jena, Germany).
Digital images were analyzed with Zeiss LSM Image
Browser, version 3.5.0.376 [EC] (AxioCam). Fluoro-
chromes were excited at 488 nm for FITC and 542 nm for
TRITC.

Results
U83A efficiently displaces human chemokines from CCR5 
signalling chemokine receptor in model system to compare 
to regulatory receptors
In order to investigate U83A activities on regulatory recep-
tors and to compare them to those on signalling receptors,
U83A binding competition was screened against chemok-
ines also relevant for regulatory receptor specificity. U83A
can displace human chemokines from receptors CCR1,
CCR4, CCR5, CCR6 and CCR8. Of these, chemokines that
bind CCR1, CCR4 and CCR5, can also be cleared by D6
and DARC (Table 1). Therefore, CCL3 and CCL5 were
selected for the comparisons as their binding can be com-
peted by U83A on signalling receptors CCR1 and CCR5 as
shown in previous tests on CCR5 bearing astrocytic U373,
monocytic U937, PBMC as well as model CCR1 or CCR5
transfected COS-7 cells [2,8]. Both CCL3 and CCL5 can
also be cleared by D6 [18], and CCL5 modulated by
DARC [14]. Competitive chemokine binding was tested
using a model COS-7 cell system which we used previ-
ously to characterize U83A binding specificity [2,8], as
high levels of receptor expression can be obtained in these
monkey fibroblast cells without expression of endog-
enous human chemokine receptors. Cells were transiently
transfected with a pcDNA3 vector containing the chemok-
ine receptor gene of interest, and evaluated using control
signalling receptors (CCR1, Figure 1A, and CCR5 Figure
1B, C). U83A displacement of radiolabelled CCL3 on sig-
nalling receptor CCR1, at 0.4 nM affinity, repeated previ-
ous findings and validated the model (Figure 1A). Highest
affinity was observed for the full length U83A chemokine
to CCR5, at 0.01 nM (Figure 1B). This was consistent with
previous observations using CCL3 displacement on CCR5
expressing MAGI-CCR5 cells as well as COS-7 cells, of
0.011 nM and 0.03 nM, respectively. This confirmed the
expression system for comparison to D6 and DARC activ-
ities. The CCR5 affinity also is the highest observed so far
for the receptors interacting with U83A which also include
CCR4, CCR6 and CCR8 (Table 1). In contrast, the spliced,

truncated version of U83A, U83A-N, showed a 0.1 nM
affinity for CCR5, in competition binding with CCL5 (Fig-
ure 1C). Thus, U83A-N displaces human chemokines less
effectively than the full-length form. This is the first dem-
onstration of U83A-N binding CCR5 using this cell
expression system and also via CCL5 competition. It is
consistent with the affinity of 8.3 nM observed in compe-
tition against CCL3 binding in U373-MAGI-CCR5 cells
which also showed higher affinity binding with the full
length molecule. Competition against CCL3 was lower in
primary human leukocytes at 90 nM as well as U937
monocytic cell lines at 54 nM, but these express both the
lower affinity receptor CCR1, as well as CCR5. However,
U83A-N was more effective at competing CCL5 than pre-

Competitive binding of U83A to signalling receptors CCR1 and CCR5 displaces human chemokinesFigure 1
Competitive binding of U83A to signalling receptors 
CCR1 and CCR5 displaces human chemokines. COS-7 
cells transfected with CCR1 (A) or CCR5 (B, C) were incu-
bated with [125I]CCL3 (A and B) or [125I]CCL5 (C) in the 
presence of increasing concentration of cold chemokine. IC50 
obtained were for (A) U83A: 0.4 nM, (B) U83A: 0.01 nM and 
(C) U83A-N: 0.1 nM. Binding curves were fitted by nonlinear 
regression and IC50 values were calculated using Graphpad 
Prism.
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vious results with CCL3, showing at least one log higher
affinity (Figure 1C) [2,8]. These results tested efficiency of
both human chemokine CCL3 and CCL5 displacements
by U83A and U83A-N in this expression system, which
then allowed comparisons to their binding on scavenger
chemokines receptors and possible displacement by the
viral chemokines.

U83A does not displace human chemokines from DARC 
and D6 regulatory receptors
U83A binding to regulatory chemokines receptors D6 and
DARC was then investigated using this model. Relevant
concentrations of the "cold" form of human chemokines

were used as positive controls (Figure 2, white columns).
CCL5 was used at the lowest dose inducing consistent dis-
placement (1 nM) as higher doses have been shown to
aggregate and interact with glycosaminoglycans inducing
unusual binding profiles [19,20]. Competitive binding of
this control confirms transfected receptor expression and
specificity. 1 nM of CCL5 and 100 nM of CCL3 displaced
respectively 33% and 35% of binding to D6 (Figure 2A
and 2B) and 1 nM of CCL5 and 20 nM of CCL3 displaced
respectively 51% and 66% of binding to DARC (Figure 2C
and 2D). Interestingly, in DARC expressing K562 cells,
CCL3 was described elsewhere as a weak DARC ligand rel-
ative to CCL5 [21,22]. Since only heterologous radiola-

U83A does not displace human chemokines binding to scavenger receptors D6 and DARCFigure 2
U83A does not displace human chemokines binding to scavenger receptors D6 and DARC. Cells transiently 
expressing D6 (A and B) or DARC (C and D) were used to investigate the binding of U83A to these receptors, monitored by 
displacement of [125I] CCL5 (A and C) or CCL3 (B and D). Positive controls were performed using cold forms of the radiola-
belled chemokine, showing significant displacement of the radiolabelled form, (A) P < 0.05, (B) P < 0.01, (C and D) P < 0.001, 
unpaired T test.
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belled CXCL1 was used as a competitor in that report,
CCL3 may bind to a different site on DARC only revealed
by homologous displacement as shown here. We
obtained consistent binding and homologous displace-
ment of CCL3 and CCL5 to DARC, as well as D6 (Figure
2). However, U83A did not compete the binding of radi-
olabelled chemokines in any of the tested combinations
or concentrations. D6 was monitored in competition
against CCL5 or CCL3 (Figure 2A and 2B) and DARC
binding by competition against CCL5 or CCL3 (Figure 2C
and 2D). No competition was observed for U83A-N (not
shown).

U83A induces specific chemotaxis of human leukocytes 
bearing CCR5
In contrast to activities on the regulatory receptors, previ-
ous data show U83A binds CCR5 resulting in a signalling
cascade which can lead to chemotaxis. Although chemo-
taxis using primary human peripheral blood mononu-
clear cells (PBMC) was demonstrated [8], the specificity of
the migrated cells had not been confirmed. To test this,
and to compare to the inability to interact with the scav-
enger receptors, U83A was used to stimulate primary
human PBMC, from different donors, either cultured for
three days to induce CCR5 or uncultured cells which pri-
marily expressed CCR2. 1 nM concentrations were used
based on optimum U83A chemotaxis indices as previ-
ously assayed using the microchemotaxis chambers, but
without further analyses using flow cytometry [8]. In con-
trast, U83A-N did not mediate chemotaxis at concentra-
tions up to 100 nM. Antibody staining and flow cytometry
were then performed with the cells that had migrated
towards the human or viral chemokines, in the bottom
wells of the microchemotaxis chambers. Specific chemo-
taxis of cells bearing CCR5 but not CCR2, towards 1 nM
U83A, was demonstrated, consistent with the binding
specificity of U83A (Figure 3). In contrast, the human
chemokine CCL2 showed specific chemotaxis for CCR2,
but not CCR5. No specific chemotaxis was shown for
U83A-N, consistent with lack of activity in chemotaxis
assays without flow cytometry. Results for three separate
donors treated with U83A are shown. These displayed var-
ying responses, but all specific for CCR5. Thus, full length
U83A stimulation can result in specific chemotaxis of
CCR5 bearing cells.

U83A delays CCR5 internalisation and blocks stimulation 
by human chemokine
Next investigated, was the persistence of U83A in delaying
internalisation of signalling receptors after endogenous
human chemokine stimulation, thus re-directing these
chemokines towards their clearance by scavenger recep-
tors. We have shown previously that CCR5 expression at
the cell surface was not altered by U83A treatment, with
minimal effects up to an hour, in contrast to stimulation

with human chemokines which showed rapid, clathrin
mediated internalisation after 5 minutes treatment [8].
This time, cells expressing CCR5 were incubated in
absence or presence of U83A, then washed and incubated
for 30, 60 and 120 minutes before being challenged with
CCL4 for 10 minutes at each time point. CCR5 surface
expression was then determined by flow cytometry. Figure
4 shows for the first time, that even after washing (there-
fore in the absence of continual re-stimulation), cell
bound U83A durably inhibits CCL4 induction of CCR5
internalisation for up to 2 hours after the initial incuba-
tion with U83A. Our previous results had demonstrated
delayed CCR5 internalisation in the presence of U83A [8].
Here, since the unbound U83A had been washed off
before stimulation by CCL4, this new observation dem-
onstrates continued inhibition of CCR5 internalisation in
the absence of continuous U83A stimulation. In contrast,
the control experiment, in the absence of U83A pre-treat-
ment, showed a normal rapid internalisation of CCR5 sur-
face expression after 10 minutes CCL4 stimulation.
Treatment with U83A-N, only showed CCR5 internalisa-
tion delay at 30 minutes, the other time points were not
significant (Table 2).

Diversion by U83A of CCR5 internalisation via delayed 
caveolin linked pathway
Previous results showed that treatment with U83A did not
link CCR5 with clathrin [8], as opposed to that described
for endogenous chemokine stimulation of CCR5 in simi-
lar cellular models [23] which clearly show clathrin linked
endocytosis even after 5 minutes treatment. In contrast, as
shown here, after 10 minutes treatment with U83A, there
was little effect on CCR5 redistribution, although coa-
lesced punctate staining of caveolin-1 was observed (Fig-
ure 5f). This pattern was distinct from treatment with the
human chemokine CCL4, specific for CCR5, which
showed CCR5 internalisation with clustering at the centre
of the cells (Figure 5b), but only limited effects on caveo-
lin staining. There was no evidence of co-localisation of
CCR5 with caveolin-1 for either CCL4 of buffer treat-
ments. In contrast, cells treated with U83A showed some
isolated punctae of CCR5 co-localised with caveolin-1
(Figure 5i). After further 30 min stimulation with U83A,
where there was more advanced internalisation, caveolin-
1 was clearly linked with CCR5 in a caveosome-like vesic-
ular array (Figure 6c). Taken together, these results show
that not only U83A delays the internalisation but it also
hijacks CCR5 receptors to caveolin rich membrane
domains, implicating diversion toward different internal-
isation or signalling pathways (Figure 4).

Discussion
Results show that U83A exercises a complex and thorough
control of CCR5 signalling receptor activity, while bypass-
ing clearance by D6 or DARC regulatory receptors (Table
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U83A specifically chemoattracts CCR5 bearing primary human leukocytesFigure 3
U83A specifically chemoattracts CCR5 bearing primary human leukocytes. PBMCs were plated out on a Neuro-
probe chemotaxis apparatus. Lower chambers were filled with a range of chemokines. After 90 minutes incubation, cells 
remaining on top of the filter were removed and the migrated cells, in the wells below the filter, collected and stained for 
CCR2 and CCR5. Red peak denotes the background cell migration (buffer only) and green denotes the test peptide/chemok-
ine. CCR2 antibody used was linked to PE and CCR5 antibody linked to FITC. The top, second and third panels show flow 
cytometry results for cells exposed to 1 nM of CCL2, U83A-N or U83A, respectively. Migration of CCR2 bearing cells were 
shown towards wells containing CCL2, and CCR5 bearing cells towards those with U83A. Experiments were repeated three 
times, one representative result shown. For the U83A treatment, the CCR5 specific results from two further donors are 
shown in the bottom panel. There was no specific chemotaxis detected using the negative control with migration buffer only.
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1). This could account for unregulated U83A activity in
chronic inflammatory disease linked with HHV6-A,
including neuroinflammatory pathology such as MS and
encephalitis [24,25].

D6 is involved in a rapid and constant constitutive inter-
nalisation and degradation of circulating human chemok-
ines. Binding of chemokine to D6 does not result in the
activation of major chemokine signalling pathways and
thus restrains the inflammatory process by competition. A
role of D6 in MS has been indicated through its involve-
ment in chemokine clearance to regulate inflammation as

well as alteration of immune cell localisation hence
impairment of immune function [26]. D6 expression has
been demonstrated on lymphatic endothelial cells, in
skin, gut and lungs with roles as a chemokine sequestering
decoy [12]. It is also implicated in clearance of chemok-
ines in placenta; D6-/- mice show increased miscarriage
indicating D6 expression protective [13,27]. Furthermore,
congenital and placental infections with HHV-6A/B have
been demonstrated as well as virus reactivation during
pregnancy [28,29]. Case reports show infections in rare
seronegative women with spontaneous abortion and
neuro-inflammatory complications in the newborn after
HHV-6 transplacental infection, and primary infected
infants [30-32].

DARC can be considered a chemokine buffer, acting as a
chemokine reservoir when expressed on erythrocytes [33].
It is also expressed on vascular endothelial cells and a role
in transcytosis, supporting leukocyte migration, has been
proposed; it is up-regulated in several inflammatory dis-
eases [17,34-37]. DARC upregulation has been associated
with acute renal transplant rejection [35], and co-localisa-
tion of DARC and CCR5 expressing cells has been sug-
gested as a common process during graft rejection, with
implications for HHV-6 association with acute renal graft
rejection [38]. Here we show U83A can avoid DARC but
still attract CCR5 expressing cells. Unregulated U83 may
drive other inflammatory pathologies, such as HHV-6
associated myocarditis [39,40], since autoimmune myo-
carditis is escalated by CCR5-bearing activated T-cells and
monocytic/macrophages [41], which can be chemoat-
tracted by U83A.

Multifaceted interactions of CCR5 with caveolin rich
membrane regions (or rafts) are suggested in a recent
report [42] which shows that signalling induced by recep-
tors expressed in these regions differs from signalling
induced by receptors expressed elsewhere. Raft domains
are often described as favouring the interactions between
surface expressed receptors and intracellular activation
pathways, (e.g CXCR1 partitioning to lipid raft is assumed
to enhance its activity [43]). However it is likely that it
only modifies the coupling rather than induces it, as for
example CCR5 can signal in absence of raft [42]. At the

U83A treatment results in long-term delays of CCL4 driven internalisation of CCR5 in the absence of re-stimulationFigure 4
U83A treatment results in long-term delays of CCL4 
driven internalisation of CCR5 in the absence of re-
stimulation. CCR5 expression in MAGI-CCR5 cells was 
monitored by flow cytometry after incubation with 100 nM 
U83A in buffer (plain line) or control, buffer only (dashed 
line) for 10 minutes, then washed, incubated for the indicated 
time (x axis, in minutes), and stimulated with 100 nM CCL4 
for 10 minutes, cells were then stained with FITC-CCR5 
antibody and fixed. CCR5 surface levels were then deter-
mined by flow cytometry. Results were normalised in refer-
ence to CCR5 level of expression at time 0, as 100% values, 
and are a combination of two experiments each run in dupli-
cate. P values for mean differences are 0.029, 0.066 and 0.016 
for 30, 60 and 120 minutes time points, respectively 
(unpaired T test).
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Table 2: Percentage of CCR5 surface expression after U83A or U83A-N treatment followed by CCL4 stimulation

Pretreatment: Buffer U83A U83A-N

Time CCL4 stimulation %CCR5 SEM N % CCR5 SEM N %CCR5 SEM N

30 minutes 68.2 5.4 4 131.4 20.1 4 90.6 7.2 4
60 57.1 5.3 4 90.0 13.8 4 74.2 16.0 4
120 44.0 6.8 3 66.95 2.6 4 46.6 5.6 4

SEM: Standard error of mean, N: replicates
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U83A delays internalisation of CCR5 and effects on localisation of caveolin-1Figure 5
U83A delays internalisation of CCR5 and effects on localisation of caveolin-1. Localisation of CCR5 and caveolin-1 
were monitored by confocal microscopy in the absence of chemokine stimulation, buffer only (a, d, g), and when stimulated for 
10 minutes with CCL4 (b, e, h) or U83A (c, f, i). DAPI nucleus staining was used as a control, which gave nuclear staining of all 
cells indicated (not shown). After stimulation, cells were fixed and permeabilised, then reacted with CCR5 antibody linked to 
FITC, green channel (a, b, c) showing internalisation induced by CCL4 (b), and caveolin-1 antibody linked with TRITC, red 
channel (d, e, f), showing coalescence of punctuate staining induced by U83A (f). The merged staining (g, h, i) shows for U83A 
treatment, examples of punctae of caveosome-like structure, with yellow merged fluorescence as indicated in the enlarged 
insets (i). Representative 0.39 micron slices are from the z-stack from three independent assays.
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virus level, it is also noteworthy that U51, one of the
HHV6 encoded chemokine receptors which binds and is
activated by CCL5, can establish unusual coupling to G
proteins. U51 can induce pertussis toxin (PTX)-insensitive
increases in phospholipase C activity and changes in
intracellular free calcium concentration, which are Gq
modulated, while different ligands can re-direct to a Gαi
linked pathway [10]. Gathering CCR5 to a caveolin raft
where Gq coupling is favoured [44], might also facilitate
U51 coupling to Gαi elsewhere. Thus redirecting CCR5 to
a raft membrane microdomain, can be another pathway
to control its activity to avoid its internalisation and to
direct signalling.

Finally, extended CCR5 blocking could lead to enhanced
U83A displacement of HIV-1 from the co-receptor CCR5,
since only the human chemokines which also compete,
such as CCL5, can be cleared by DARC or D6. This would
also enhance the competitive inhibition of HIV-1 infec-
tion we have previously demonstrated by U83A [8]. To
our knowledge this internalisation inhibition by a heter-
ologous chemokine is unique. CCR5 is a key signalling
molecule to infection. For HIV-1 it not only serves as co-
receptor, but activation via CCR5 is important in develop-
ment of an efficient immune response to the infection
[45,46]. CCR5 is expressed on plasmacytoid and imma-
ture myeloid dendritic cells, plus monocytic/macro-
phages, NK cells as well as key T cell subsets such as TH1,
naive CD8, and some Treg cells, thus important in protec-
tive inflammatory responses in infected tissue sites
[15,47]. It is essential for developing a TH1 cell response,
which controls intracellular virus infections. Although
deletion of CCR5 surface expression as observed in the
CCR5delta32 mutation provides protection against HIV-1

infection, blocking as well as stimulation of CCR5 via effi-
cient human chemokine CCL3L1 can also enhance pro-
tection, similar to the activities shown here by viral U83A
chemokine [45]. Further, CCR5 expression promotes
resistance to West Nile Virus infections [48]. In HHV-6A,
CCR5 effects are targeted on multiple levels. U83A dis-
places human chemokines from binding, and also delays
internalisation and hence recycling of unbound CCR5. It
diverts CCR5 to signalling via a caveolin-linked pathway,
which still allows chemotaxis, but delays signalling via
human chemokines, hence only recruitment of cells sus-
ceptible for infection rather than activated cells for immu-
nity and clearance. The displacement of human
chemokines, both by competitive binding and delayed
internalisation preventing restimulation, can act as a co-
factor to DARC and D6, which can bind and sequester
these human ligands of CCR5. This would raise the levels
of chemokines recognised by D6, which can induce its
membrane expression and further enhance chemokine
degradation [49]. Furthermore, HHV-6A U51 chemokine
receptor can both bind and downregulate expression of
CCL5, which normally interacts with CCR5. To sum up,
U83A permits continued sequestering of human chemok-
ines via regulatory receptors away from an infectious cen-
tre, while occupying the human signalling receptors,
preventing their physiological recycling, directing CCR5
to a different internalisation pathway and displacing nor-
mal interactions with endogenous chemokines.

U83A effects add to the increasing evidence for pivotal
roles played by receptor internalisation regulation in the
complexity of cell responses to chemokines. In contrast to
the full-length U83A effects, the spliced truncated U83A-
N, had lower affinity binding, did not mediate specific

U83A specific induction of co-localisation of CCR5 with caveolin-1Figure 6
U83A specific induction of co-localisation of CCR5 with caveolin-1. Localisation of CCR5 and caveolin-1 was moni-
tored by confocal microscopy, in absence of stimulation (a), when stimulated with 30 minutes with 100 nM CCL4 (b) or U83A 
(c). CCR5 is labelled with antibody linked to FITC (green) and caveolin-1 with TRITC (red), co-localisation appears as yellow.
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chemotaxis, and had no significant effects on internalisa-
tion. Similarly, CCR7 is differentially internalized accord-
ing to the stimulating ligand (CCL19 or CCL21),
suggesting different functions or regulation of these two
otherwise redundant chemokines [50]. While differential
internalisation efficiency of CCR3 by different chemok-
ines was also demonstrated with eotaxin/CCL11 versus
RANTES/CCL5 [51]. Recent results also show further inhi-
bition mechanisms, where dimerisation of DARC with
receptor CCR5 prevents chemotaxis without affecting
internalisation [52]. This inhibitory effect would also be
amplified with U83A interaction with CCR5 preventing
recycling and exposure to signalling chemokines.

Conclusion
HHV6 U83A has developed a double ability to escape
clearance by avoiding regulatory scavenger chemokine
receptors and by delaying internalisation/recycling of
their classical target signalling receptors, therefore
together with previously defined agonist activities and
complementary effects of the virus chemokine receptor,
these actions provide molecular mechanisms for linked
inflammatory pathologies, such as MS, as well as applica-
tions for novel immunomodulators.
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