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Abstract

Background: The D-isomeric form of the tripeptide FEG (feG) is a potent anti-inflammatory agent
that suppresses type | hypersensitivity (IgE-mediated allergic) reactions in several animal species.
One of feG's primary actions is to inhibit leukocyte activation resulting in loss of their adhesive and
migratory properties. Since activation of neutrophils is often associated with an increase in
respiratory burst with the generation of reactive oxygen species (ROS), we examined the effect of
feG on the respiratory burst in neutrophils of antigen-sensitized rats. A role for protein kinase C
(PKC) in the actions of feG was evaluated by using selective isoform inhibitors for PKC.

Results: At 18h after antigen (ovalbumin) challenge of sensitized Sprague-Dawley rats a
pronounced neutrophilia occurred; a response that was reduced in animals treated with feG (100
pg/kg). With antigen-challenged animals the protein kinase C (PKC) activator, PMA, significantly
increased intracellular ROS of circulating neutrophils, as determined by flow cytometry using the
fluorescent probe dihydrorhodamine-123. This increase was prevented by treatment with feG at
the time of antigen challenge. The inhibitor of PKCJ, rottlerin, which effectively prevented
intracellular ROS production by circulating neutrophils of animals receiving a naive antigen, failed
to inhibit PMA-stimulated ROS production if the animals were challenged with antigen. feG
treatment, however, re-established the inhibitory effects of the PKCS inhibitor on intracellular
ROS production. The extracellular release of superoxide anion, evaluated by measuring the
oxidative reduction of cytochrome C, was neither modified by antigen challenge nor feG treatment.
However, hispidin, an inhibitor of PKC, inhibited the release of superoxide anion from circulating
leukocytes in all groups of animals. feG prevented the increased expression of the Bl-integrin
CDA49d on the circulating neutrophils elicited by antigen challenge.

Conclusion: feG reduces the capacity of circulating neutrophils to generate intracellular ROS
consequent to an allergic reaction by preventing the deregulation of PKC3. This action of feG may
be related to the reduction in antigen-induced up-regulation of CD49d expression on circulating
neutrophils.

Background maintenance of the health and integrity of the oral and
Through the release of proteins and peptides the salivary ~ gastric mucosa [1]. Less well recognized is the role of sali-
glands are active participants in the digestion and in the = vary endocrine factors in the modulation of systemic
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immune and inflammatory reactions [2,3]. One of these
endocrine factors is the seven amino acid peptide - sub-
mandibular gland peptide-T (SGP-T; sequence =
TDIFEGG), which markedly attenuates the severity of ana-
phylactic and endotoxic reactions [4,5]. This heptapeptide
can be truncated to a biologically active tripeptide (FEG)
which, when converted to its D-isomeric form (feG), pro-
duces a significant reduction in type I hypersensitivity
(allergic) reactions of the intestine, heart, skin and lungs
[6-10].

Traditionally allergic reactions are often associated with
eosinophil activation and infiltration into the airways
[11], even when the reaction occurs outside the lungs in
peripheral tissues such as the intestine [12] or the skin
[13]. However, 50% of asthma cases are non-eosinophilic
in nature and attributable to neutrophilic airway inflam-
mation, possibly triggered by bacterial endotoxin, partic-
ulate and gaseous air pollution, viral infection, and
allergens or their mediators [14], and a significant neu-
trophil component is recognized with allergic rhinitis
[15], and the vascular permeability changes elicited by
intestinal allergy [10]. With the Sprague-Dawley strain of
rat airway allergic reactions shows a large neutrophilic
inflammation [16], whereas with the Brown Norway
strain influxes of neutrophils, eosinophils and lym-
phocytes occur [6]. Treatment with feG reduces this influx
of leukocytes in antigen-challenged Brown Norway rats
[6], and the peptide is also potent inhibitor of human and
rat neutrophil adhesion and migration [10,17,18].

The primary role of the neutrophil in the inflammatory
response is to seek, bind, ingest and destroy invading
pathogens, although the neutrophil is also activated by
allergic reactions. Since activation of neutrophils is associ-
ated with an increase in respiratory burst with the genera-
tion of ROS, an expectation is that feG, as a potent
suppressor of several neutrophil functions, would also
regulate the respiratory burst in neutrophils. In this study
we report that feG suppresses the increase in intracellular
ROS production by circulating neutrophils elicited by a
type I hypersensitivity reaction.

Methods

Animals and sensitization

The University of Calgary Animal Care Committee
approved the research protocol, which conforms to the
guidelines of the Canadian Council on Animal Care.
Sprague-Dawley rats (Charles River Canada, Saint-Con-
stant, QC), with an initial weight of 160-175 g were sen-
sitized with an intraperitoneal injection of 1 mg OA and
50 ng pertussis toxin (Sigma Chemical, St. Louis, Mo.) as
an adjuvant [4,19]. Four to six weeks following sensitiza-
tion the animals, now weighing 300-350 g, were divided
into four groups and treated as follows 18 hours before
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collection of the white blood cells: (1) 100 mg/kg of naive
antigen (BSA) into the stomach by gavage (BSA group; n
=25); (2) 100 pg/kg of feG intraperitoneally, and 100 mg/
kg of BSA (feG group; n = 25); (3) 100 mg/kg of sensitiz-
ing antigen into the stomach by gavage (OA group; n =
25); or (4) 100 pg/kg of feG intraperitoneally, and 100
mg/kg of OA (OA+feG group; n = 25). A dose of 100 g/
kg of feG was used as it provides maximal inhibition of
intestinal allergic reactions in sensitized rats [20].

Leukocyte preparation

Under halothane anaesthesia 9-10 mL of blood was col-
lected by cardiac puncture into a 10 mL syringe, contain-
ing 1 ml of 3.8% Na citrate, an anticoagulant. The blood
was diluted with polymorphonuclear leukocyte (PMN)
buffer without calcium in a 50 mL polypropylene centri-
fuge tube, and centrifuged at 400 g for 15 min at 4°C. The
PMN buffer was of the following composition: 138 mM
NaCl, 2.7 mM KCl, 3.2 mM Na,HPO, - 12H,0, 5.5 mM
glucose. The white blood cells were removed from the sur-
face of the pellet with a plastic Pasteur pipette, and con-
taminating red blood cells were lysed with 4 volumes of
0.15 M NH,CI for 10 min at room temperature. The vol-
ume of the polypropylene centrifuge tube was completed
to 50 mL with PMN buffer without calcium, and after a
second spin at 400 g for 10 min at 4°C, the supernatant
was discarded. The pellet was washed with calcium free
PMN buffer and centrifuged again 400 g for 10 min at
20°C. The supernatant was discarded and the cells resus-
pended in 1 mL of PMN buffer containing calcium (1.2
mM CacCl,), and stored on ice until used.

Total blood leukocyte counts were determined with a Hyl-
ite haemocytometer (Hauser Scientific, Boulder, CO)
using Trypan Blue exclusion as a marker of cell viability.
From FACS analysis (see below) the percent of neu-
trophils in the blood samples was determined.

Measurement of intracellular ROS

A fluorescent probe and flow cytometry techniques pro-
vide a rapid and sensitive method for measuring intracel-
lular ROS generation. The fluorescent probe, DHR,
(Sigma-Aldrich) is specifically responsive to H,O, accu-
mulation [21], which is generated by the myeloperoxidase
in neutrophil granules.

Leukocytes (1 x 106/ml) were preincubated, with contin-
uous shaking, for 15 min at 37°C in PMN-Ca?+ buffer,
containing 0.25 umol/l DHR. The cells were then stimu-
lated with different concentrations of PMA (10-8to 10-°M)
for 10 min at 37 °C, and then stored on ice to stop reac-
tions until flow cytometry analysis. The results are
expressed as the mean fluorescence intensity (MFI).
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To evaluate the role of PKC in the production of intracel-
lular ROS leukocytes (1 x 106/ml) were preincubated, in
the presence of DHR, for 15 min at 37 °C with one of sev-
eral PKC inhibitors - G66976 (EMD Biosciences, San
Diego, CA); hispidin (Sigma-Aldrich, St. Louis. MO) and
rottlerin (ALEXIS Biochemicals, San Diego, CA). The PKC
inhibitors, which show some isoform specificity, were
used at the IC50 values identified using isolated enzymes
and whole cells (Table 1).

Cell staining for CDI Iblc and CD49d

One million cells were incubated with flourescein-conju-
gated antibody for 30 min at 4°C in the dark in polypro-
pylene tubes. Rat anti-CD49d monoclonal antibody
(CD49d:FITC; clone TA-2) was from Serotec Inc. (Raleigh
NC, USA), and mouse anti-CD11b/c monoclonal anti-
body, (CD11b/c:FITC; clone OX 42) was from Abcam,
Inc. (Cambridge MA, USA). Following incubation with
the antibody 1 mL of cold PBS was added and the cells
centrifuged at 400 g for 10 min at 4°C. The supernatant
was decanted and 500 pL of PMN buffer was added to the
cells, which were then aspirated with a plastic Pasteur
pipette to a polystyrene tube for reading with a Fluores-
cence Activated Cell Sorter. The effects of the peptides on
the binding of antibodies to cell surface molecules were
evaluated by determining the mean fluorescence intensity
(MFI) of cells after subtracting the background.

Flow cytometry

Analyses of fluorescence were carried out on a Becton
Dickinson (BD) FACSVantage SE™ System at the Flow
Cytometry Core Facility at the University of Calgary. With
the FACS leukocytes are distinguished and neutrophils
readily identified by forward/side light scatter, which rep-
resent cell size and granularity, respectively. In all
10%events are collected in each gate, and the fluorescence
recorded under 488 nm excitation. Green fluorescence
from DHR was measured in the FL1 channel through a
525 nm band-pass filter (BP) in combination with a 550
nm dichroic long pass (DL) mirror. Fluorescence emis-
sions are recorded using photomultiplier gain settings.
ROS production was quantified by mean fluorescence
intensities (MFI).

Table I: Protein kinase C inhibitors, their specificity and 1C50 values.
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Release of superoxide anion

Neutrophils (10°) were suspended in PMN buffer con-
taining cytochrome C (1 mg/ml; Sigma-Aldrich) and incu-
bated at 37°C. Each sample was read at 550 nM along
with a reference sample containing 1440 units of superox-
ide dismutase (Sigma-Aldrich) in a dual-beam spectro-
photometer (Hitachi, U200 spectrophotometer). The rate
of superoxide production in response to 10-°M PMA was
calculated from the slope of the line [22], and was
expressed as pmol superoxide/10°¢ neutrophils. The per-
cent neutrophils was determined by flow cytometry, and
was based on total leukocyte counts, determined with a
Hylite haemocytometer (Hauser Scientific, Boulder, CO)
using Trypan Blue exclusion as a marker of cell viability,
the number of neutrophils were calculated.

To evaluate the role of PKC on the release of superoxide
leukocytes (1 x 106/ml) were preincubated for 5 min at
37°C with one of several PKC inhibitors (G66976/PKCo,
hispidin/PKC; rottlerin/PKCS) during a 5 min preincu-
bation period. The results were analyzed by one-way anal-
ysis of variance (ANOVA) for differences between animal
groups (BSA, feG, OA and OA+feG) with a specific PKC
inhibitor (G66976/PKCo; hispidin/PKCpB; rottlerin/
PKCd) and for differences between the PKC inhibitors for
a specific animal group.

Data analysis

The results are presented as the mean + SEM. The statisti-
cal functions used that associated with Excel (Microsoft
Office XP, Redmond, WA). Comparisons between two
groups were made using the unpaired Student's t-test.
Where appropriate one-way analysis of variance was
applied using a Student's t-test for post hoc analysis. Sta-
tistical values reaching probabilities of p < 0.05 were con-
sidered significant.

Results

Leukocyte numbers and percent neutrophils

With unchallenged animals the circulating white blood
cell count was 7 + 2 x 10° cells/ml, and this number was
increased by antigen challenge to 18 + 3 x 10° cells/ml
(Figure 1a). Treatment with feG, which did not affect neu-
trophil numbers in unchallenged animals, reduced this
antigen-induced increase to 9 + 1 x 106 cells/ml. When the
percentage of neutrophils is considered a more exagger-

Inhibitor (Selectivity) IC50 Values Concentration Used Reference
G56976 (0. > B) PKCa =2 nM; PKCBI = 6 nM 3nM [66, 67]
Hispidin (B) PKCB =3 uM 6 uM [68]
Rottlerin () PKC® = 2-6u M; PKCa,f,y = 30— 6 uM [51,69]
40 uM
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Figure |

Leukocyte Counts. Total leukocyte numbers and the
number and percent neutrophils in blood of sensitized rats
I8 hours after receiving either naive antigen (BSALI n = 9),
feG (M n = 9), sensitizing antigen (OA™; n = | 1), or OA +

5522
[o$

3
o

<%1; n = 13). Challenge with sensitizing antigen (OA)
increased the total number of circulating leukocytes, and this
increase was prevented by feG (a). Antigen challenge
increased significantly the percentage of circulating neu-
trophils (b), which is reflected in a dramatic increase in the
total number of circulating neutrophils (c). These changes
elicited by antigen challenge were inhibited significantly by
feG. Significance: # > BSA; ## > feG;* < OA

ated response of antigen challenge was revealed. Between
15 and 19% of the circulating leukocytes examined by
FACS analysis were neutrophils in BSA and feG treated
animals (Figure 1b). However, 18 h after antigen chal-
lenge the percentage of neutrophils in the blood increased
3-fold to 49 + 4%, which given the doubling of the total
number of circulating leukocytes reflects a 6-fold increase
in the number of circulating neutrophils (Figure 1c). feG
treatment reduced the increase in the percentage of neu-
trophils to 29 + 3%, which reflects a decrease of 70% in
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the total number of circulating neutrophils relative to the
OA-challenged animals.

Intracellular Oxidative Activity

Background fluorescence of the neutrophils in the pres-
ence of DHR alone was the same with all animal groups -
BSA challenged, feG-treated, OA-challenged, and feG-
treated & OA-challenged (not shown). PMA, in the dose
range of 3.5 x 107M to 10-°M, increased intracellular ROS
production by circulating neutrophils collected from anti-
gen challenge (OA) animals (Figure 2). Treatment with
feG at the time of antigen challenge prevented this
increase, such that PMA-stimulated ROS production was
comparable to that seen with control animals (i.e. BSA-
challenged or feG treated).

In several experiments the effects of feG, added to cells in
vitro, on intracellular oxidative activity were examined.
The background for cells obtained from unsensitized rats
was 66.2 + 7.6 MFI and PMA (3.5 x 10-”M) increased flu-
orescence to 142.7 + 24.9 MFI. feG in the concentration
range of 10-8M to 10-13M modified neither background
nor PMA stimulated oxidative activity, with representative
values for 10-1'M feG being 71.1 + 10.2 and 130.0 + 16.6
MFI for background and PMA-stimulated cells, respec-
tively.

Intracellular Oxidative Activity
of Blood Neutrophils
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Figure 2

Intracellular Superoxide. Dose response for PMA stimu-
lation of intracellular oxidative activity of circulating neu-
trophils 18 hours after administering to ovalbumin (OA)-
sensitized rats naive bovine serum albumin (BSA) (LI n = 7),
sensitizing OA antigen (O, n =7), feG (Ml n =7), or OA +
feG (@, n = 6). Oxidative activity was measured using flow
cytometry for a marker of oxygen free radicals (123-dihy-
drorhodamine), and is expressed as mean fluorescence inten-
sity (MFI). Significance: # < feG & OA,; ## > all other groups.
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Protein Kinase C (PKC) inhibition and intracellular
Oxidative Activity

With circulating neutrophils neither the PKCa inhibitor,
G066976, nor the PKCP inhibitor, hispidin, altered the
generation of PMA-stimulated ROS in any of the animal
groups, indicating an independence of ROS production
from PKCo and PKCP (Figure 3). However, with the naive
antigen, BSA, either in the presence or absence of feG,
ROS generation by circulating neutrophils was reduced by
~ 70% with the PKC$ inhibitor, rottlerin. This inhibitory
effect of rottlerin was abolished after antigen challenge
(OA), suggesting that allergic reaction alters the ability of
PKC5d to modulate the activation of NADPH oxidase activ-
ity in neutrophils. feG restored PKCd regulation of ROS
production after OA-challenge, indicating a modulation
of PKC3 activity by the peptide.

Extracellular release of superoxide anion

For all groups of animals the PMA-stimulated superoxide
anion release from circulating leukocytes of PMA-stimu-
lated (control cells) was similar (Figure 4). The PKCoa
inhibitor-treated (G66976) did not modify PMA-stimu-
lated superoxide anion release from leukocytes, whereas
hispidin reduced superoxide release in all animal groups,
thus indicating a PKCP involvement in the extracellular

Intracellular Superoxide
and PKC Inhibition

3 Control

Il G66976 (PKCa)
[ Hispidin (PKCB)
I Rottlerin (PKC3)

Mean Fluoresence Intensity

Figure 3

PKC Inhibition and Intracellular Superoxide. Effects of
several PKC isozyme inhibitors (Control (no PKC inhibitor)
O G66976/PKCo. B hispidin/PKC I; and rottlerin/

.?::‘ on PMA-stimulated (3.5 % 10-6M) ROS produc-
tion by circulating neutrophils. Oxidative activity of circulat-
ing neutrophils 18 hours after administering to sensitized rats
either BSA (n = 5); feG (n = 6); OA antigen (n = 6), or OA +
feG (n = 6). Oxidative activity was measured by determining
mean fluorescence intensity (MFI) using flow cytometry for a
marker of oxygen free radicals (123-dihydrorhodamine;
DHR). Significance: * < Control; # > BSA; ¢ < OA
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PKC Inhibition and Superoxide Release. Effects of PKC
isozyme inhibitors (Control [ G66976/PKCo. B hispidin/

R
(R

5

PKCpB ; and rottlerin/PKCS) on PMA (3.5 x 10-6M)-
stimulated superoxide release from circulating neutrophils.
Oxidative activity was measured |8 hours after administering
to ovalbumin (OA)-sensitized rats naive bovine serum albu-
min (BSA) (n = 5), sensitizing OA antigen (n = 6), feG (n = 4),
or OA + feG (n = 6). Oxidative activity was measured by
determined by reduction of cytochrome C. The results are
expressed as [tmoles/min/ |08 neutrophils. Significance: * <
Control; # > Control.

release of superoxide anion. Rottlerin, the PKCd inhibitor,
significantly increased superoxide release from circulating
leukocytes of the BSA-challenged animals, although this
increase did not occur with the other treatment groups.

Cell surface expression of CDI Iblc and CD49d
Treatment with feG reduced the antigen challenge-
induced increase in expression of CD49d on circulating
neutrophils, whereas CD11b/c expression was not
affected by any of the treatments (Figure 5).

Discussion

The respiratory burst of neutrophils functions as a primary
host-defence mechanism against invading micro-organ-
isms. This microbicidal action occurs predominately
inside the cell within the phagolysosome [23], and nor-
mally only a small portion of superoxide or its metabo-
lites is released to the extracellular environment [24,25]
through the orifice formed by fusion of oxidant-produc-
ing compartments with the plasma membrane [24]. How-
ever, the superoxide that is released extracellularly is
transformed into H,0O, with the concurrent release of
myeloperoxidase, which reacts with a halogen (e.g. Cl) to
form the highly toxic hypochlorous acid (HOCI). It is this
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CD11b/c and CD49d
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Figure 5

Cell Surface Expression of CDI Ib/c and CD49d. The
effect of antigen challenge on the expression of CDI Ib/c 3 2-
integrin and CD49d P |-integrin on circulating neutrophils.
Integrin expression on the cell surface of neutrophils was
determined by measuring the mean fluorescence intensity
(MFI) of specific antibody binding for each integrin. Ovalbu-
min sensitized rats received either naive antigen (BSA LI n =
5), feG (M n = 6), sensitizing antigen (OA IF]; n = 6), or OA +

feG (%; n = 6) 18 h before harvesting the cells. Significance:
# > BSA; * < OA.

extracellular generation of ROS that is believed to contrib-
ute to aggravated inflammation and cell damage in several
diseases such as systemic inflammatory response syn-
drome [26], hypoxic injury followed by reoxygenation
after transplantation and in myocardial, hepatic, intesti-
nal, cerebral, renal, other ischemic diseases [27], and pul-
monary inflammation [28].

The extracellular release of superoxide by circulating neu-
trophils and eosinophils is increased in patients with
asthma [29-32] or cutaneous allergic reactions [33,34].
The results of the current study show that an increase in
the respiratory burst of circulating neutrophils also occurs
with intestinal allergy, and may be a general feature of
type I hypersensitivity reactions, although in our animal
model it is predominately the generation of intracellular
ROS within neutrophils that is increased by antigen chal-
lenge, whereas superoxide release is not altered. Nor-
mally, the NADPH oxidase complex in circulating
leukocytes is unassembled and functionally inactive, a
mechanism that prevents inappropriate generation of
superoxide. However, upon exposure to a priming agent
the NADPH oxidase complex is assembled so that after
extravasating and migrating to the site of inflammation
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the phagocyte is functionally active [23]. The results
described herein suggest that an allergic reaction inappro-
priately primes the NADPH oxidase complex in circulat-
ing neutrophils, and although ideally the superoxide
generated is directed into the phagolysosome a small por-
tion of superoxide or its metabolites is released to the
extracellular environment [24,35]. This extracellular
appearance of neutrophil-derived ROS that contributes to
aggravated inflammation and cell damage. Interference
with ROS production [36] may account for the therapeu-
tic potential of some anti-asthmatic or anti-allergic drugs
[37-39]. Similarly, the anti-allergic and anti-asthmatic
properties of feG [6,7] may be due, in part, to the reduc-
tion in the intracellular oxidative burst activity of neu-
trophils.

Several PKC isozymes (o, BII, & and () are involved in the
regulation of NADPH oxidase and the respiratory burst of
human and rat neutrophils [40-47], a process that
involves phosphorylation by these four PKC isozymes of
p47rhox [41,43,47]. This phosphorylation is a critical step
for translocation of the cytosolic components and assem-
bly of the active NADPH oxidase. Of particular relevance
to PMA-stimulated generation of ROS in neutrophils are
the PKC isozymes o, 3, and 8. These isozymes require for
their activation DAG, the endogenous ligand for PMA,
whereas the PKC( isoform, does not require DAG. Intrac-
ellular ROS production by circulating neutrophils is regu-
lated predominately by PKCd (Figure 3), and this result
concords with reported role of PKCS in regulating
NADPH oxidase assembly for PMA-dependent generation
of ROS in human neutrophils [48], monocytes [49,50]
and eosinophils. Generally, PKCS is considered to posi-
tively regulate superoxide release from human eosi-
nophils [51,52], and the increase in PMA-stimulated
release of superoxide from neutrophils of rats challenged
with BSA (naive antigen) in the presence of the PKCd
inhibitor, rottlerin (Figure 4) seems paradoxical. This
potentiating action of rottlerin possibly reflects the posi-
tive and negative role of PKCJ in regulating cell function,
as a similar increase in superoxide release was seen with
zymosan-stimulated equine eosinophils [53], although
data on neutrophils are lacking. It may be possible that
PKCS9 participates in shifting the direction of ROS produc-
tion from intracellular accumulation to extracellular
release, although this speculation requires confirmation.
Given that eosinophils from atopic patients release super-
oxide predominately into the extracellular space, whereas
that of neutrophils is directed more to the interior of the
cell [54], it would be interest to determine if the direc-
tional differences reflect the different contributions of
PKCd to the Rac-dependent site of assembly of the
NADPH oxidase complex in eosinophils and neutrophils,
i.e. plasma membrane or phagolysosome, respectively
[54].
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In contrast, the release of superoxide from neutrophils is
regulated predominately by PKCP [43,45], an observation
that was corroborated in the present study (Figure 4). Our
study also shows that antigen challenge of sensitized ani-
mals leads to loss of responsiveness to PKC inhibitors, as
seen with the PKCS inhibitor, rottlerin, on circulating
neutrophils (Figure 3). This loss of responsiveness to rott-
lerin may reflect a deregulation of PKC by antigen chal-
lenge. The mechanism by which this occurs is not known,
but may reflect a recently described novel G-protein recep-
tor coupled (GPCR)-PKC-regulated switch that enhances
receptor signalling, and prevents receptor internalization
with consequent loss of responsiveness [55]. Treatment
with feG re-established sensitivity to rottlerin, and cor-
rected the supposedly deregulated PKC function,
although the mechanism of action is unknown.

An up-regulation of CD49d expression on circulating neu-
trophils occurs with ischemia-reperfusion injury [56], in
septic patients [57], and as shown herein with allergic
reactions (Figure 5). This abnormal up-regulation of a B1-
integrin on circulating neutrophils leads to inappropriate
neutrophil homing and recruitment [56-58], and activa-
tion of NADPH oxidase [59,60]. Thus, expression of B1-
integrin on circulating neutrophils could cause inappro-
priate inflammatory responses not only at the leukocyte-
endothelial cell interface but also at an extravascular inter-
face [9,59], possibly through a mechanism involving frus-
trated phagocytosis and the leakage of the dismutated
product of intracellular superoxide, hydrogen peroxide,
from intracellular compartments. Concurrent with a
decreased expression of CD49d by feG treatment of OA-
challenged animals (Figure 5) the intracellular oxidative
burst was correspondingly decreased (Figure 3) with a
consequent reduction in the severity of allergic reactions.
These observations may explain why antibodies to and
small molecule antagonists against CD49d are effective in
blocking asthmatic reactions in rats and sheep [61,62].

The mechanism by which feG, administered 18 h after
antigen, decreases circulating neutrophil accumulation,
intracellular oxidative activity and CD49d expression
remains undefined. However, previous studies suggest
that feG and related peptides probably exert their anti-
allergic actions on early cellular events as they reduce rap-
idly initiated anaphylactic events such as hypotension,
intestinal motility and vascular permeability [10,20]. A
mode of action for feG independent of mast cells may pre-
dominant as the peptides do not modify antigen-evoked
mast cell degranulation [4], whereas this peptide effec-
tively reduces neutrophil adhesion and leukocyte migra-
tion both in vive and in vitro [6,17]. Since neither binding
nor cellular uptake of [3H]|feG has been observed with rat
leukocytes or neutrophilic transformed HL60 cells
(unpublished), we are currently determining if feG may
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act as a high affinity, low avidity allosteric regulator of
integrins and associated co-stimulatory molecules [17], in
a manner similar to a regulation of CD11a/CD18 affinity
for counter ligands by a conformational switch in the I
domain of this integrin [63]. Since engagement of
integrins contributes to increases in vascular permeability
and superoxide production [64,65], this mechanism of
action may account for the observed properties of feG.

Conclusion

The tripeptide feG reduces the increased expression of
CD49d and intracellular oxidative burst of circulating
neutrophils elicited by antigen challenge. feG prevents the
loss of responsiveness in the regulation of PKCS in circu-
lating neutrophils.
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