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Abstract 

Acute respiratory distress syndrome (ARDS) is a common complication of critical illness characterized by lung inflam-
mation, epithelial and endothelial dysfunction, alveolar-capillary leakage, and worsening respiratory failure. The 
present study aimed to investigate the anti-inflammatory effects of non-selective phosphodiesterase (PDE) inhibi-
tor aminophylline. New Zealand white rabbits were randomly divided into 3 groups: animals with respiratory failure 
defined as PaO2/FiO2 ratio (P/F) below < 26.7 kPa, and induced by saline lung lavage (ARDS), animals with ARDS 
treated with intravenous aminophylline (1 mg/kg; ARDS/AMINO), and healthy ventilated controls (Control). All animals 
were oxygen ventilated for an additional 4 h and respiratory parameters were recorded regularly. Post mortem, the 
lung tissue was evaluated for oedema formation, markers of inflammation (tumor necrosis factor, TNFα, interleukin 
(IL)-1β, -6, -8, -10, -13, -18), markers of epithelial damage (receptor for advanced glycation end products, RAGE) and 
endothelial injury (sphingosine 1-phosphate, S1P), oxidative damage (thiobarbituric acid reactive substances, TBARS, 
3-nitrotyrosine, 3NT, total antioxidant capacity, TAC). Aminophylline therapy decreased the levels of pro-inflammatory 
cytokines, markers of epithelial and endothelial injury, oxidative modifications in lung tissue, reduced lung oedema, 
and improved lung function parameters compared to untreated ARDS animals. In conclusion, non-selective PDE 
inhibitor aminophylline showed a significant anti-inflammatory activity suggesting a potential of this drug to be a 
valuable component of ARDS therapy.
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Introduction
The acute respiratory distress syndrome (ARDS) is a het-
erogenous syndrome defined by the presence of bilateral 
radiographic pulmonary opacities, arterial hypoxemia 

and absence of cardiac failure as a primary cause [1]. It 
is characterized by alveolar epithelial and lung endothe-
lial damage, which results in increased permeability, pul-
monary oedema, and alveolar filling [2]. ARDS develops 
within one week of a known clinical insult or the onset 
of new or worsening respiratory symptoms due to a 
variety of risk factors, including direct (e.g. bacterial or 
viral pneumonia, gastric aspiration, lung contusion, toxic 
inhalation, and near drowning) or indirect (e.g. sepsis, 
pancreatitis, severe trauma, massive blood transfusion, 
and burn). Despite substantial improvement in under-
standing the pathophysiology, ARDS remains a common, 
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morbid and life-threatening condition with a mortality of 
approximately 30% [1, 3–5].

ARDS is a complex condition that involves alveolar and 
systemic inflammation. Several factors including etiol-
ogy, host factors (comorbidities and genetics), immu-
nomodulation (e.g. administration of steroids), impact 
of secondary insults (e.g. ventilator-induced lung injury 
and nosocomial infection), etc. are likely to affect inflam-
mation in ARDS [6]. In ARDS pathogenesis, the innate 
immune response plays a critical role. Tissue damage 
is mediated by many immunological mechanisms that 
involve neutrophils, macrophages and dendritic cells. 
Inflammatory insults to the epithelium, alveolar mac-
rophages and vascular endothelium cause an accumu-
lation of protein-rich oedema fluid in the alveoli and 
consequently hypoxemia due to reduced gas exchange. 
The participation of alveolar macrophages in the orches-
tration of inflammation and ARDS clearance is crucial 
[7]. When alveolar macrophages are activated, neutro-
phils and circulating macrophages recruit to the lung 
injury sites. Proteases, reactive oxygen species (ROS), 
eicosanoids, phospholipids and cytokines are among the 
bioactive mediators produced by these cells that help to 
maintain the inflammatory responses.

In ARDS, increased permeability for liquid and protein 
across the injured lung endothelium results in forma-
tion of interstitial oedema. Subsequently, the oedema-
tous fluid rich in proteins, neutrophils and red blood 
cells translocates to the alveoli, what is typically aided 
by disruption of the normally tight barrier of the alveo-
lar epithelium [8–10]. Worsening lung compliance 
causes ventilation-to-perfusion mismatch and right-to-
left intrapulmonary shunting which contribute to arte-
rial hypoxemia in ARDS patients. Hand-in-hand with 
hypoxemia, poor carbon dioxide excretion occurs as a 
fundamental component of respiratory failure, resulting 
in increased minute ventilation and increased lung dead 
space.

Despite intensive research in this field, no pharmaco-
logical therapy for ARDS has been shown to reduce evi-
dently the short-term or long-term mortality in ARDS. 
However, several groups of drugs have a potential to 
enhance at least partially the clinical status of the patient 
by reducing the work of breathing (neuromuscular block-
ers), mitigating inflammation (glucocorticoids), or reduc-
ing oxidative stress (antioxidants) [11]. In this context, 
inhibitors of phosphodiesterases (PDEs) with their wide 
variety of therapeutic effects may belong to the drugs 
which could be potentially beneficial in ARDS. Main 
action of PDEs is based on their ability to split intracellu-
lar second messengers cyclic adenosine monophosphate 
(cAMP) and cyclic guanosine monophosphate (cGMP) 
to inactive products. The PDE enzymatic superfamily 

consists of 11 gene families (PDE1 to PDE11), the major-
ity of which contain multiple PDE genes [12]. Thus, some 
PDE families are cGMP-specific (PDE5, 6, and 9), while 
others are cAMP-specific (PDE4, 7 and 8), and others 
hydrolyze both cAMP and cGMP (PDE1, 2, 3, 10, and 
11) [13, 14]. Resulting low cAMP concentrations pro-
mote inflammation by increasing the production of inter-
leukins (IL)-8, -12, -17, -22, -23, tumor necrosis factor 
(TNF)α, interferon, and chemokines, while high cAMP 
concentrations produce an anti-inflammatory response 
by inducing the synthesis of IL-6 and IL-10 [15]. Effects 
of PDE inhibitors may be selective, influencing solely one 
PDE, or non-selective, influencing more PDEs, much as 
a group of medicaments named methylxanthines. Meth-
ylxanthines act through various mechanisms including 
non-selective PDE inhibition, what is responsible for a 
wide variety of actions of these drugs [16]. For instance, 
caffeine is used because of its stimulatory effects on res-
piration, cognition, and attention while theophylline 
and theobromine are used in the treatment of bronchial 
asthma and chronic obstructive pulmonary disease due 
to their bronchorelaxation, vasorelaxation, and cardi-
ostimulation effects [17, 18]. The complex mechanisms 
of methylxanthines action are not fully understood. How-
ever, they produce bronchodilation and vasodilation by 
increasing intracellular levels of cAMP and cGMP. Fur-
thermore, methylxanthines suppress the release and 
action of a variety of pro-inflammatory substances by 
lowering calcium, acetylcholine, and monoamines in cells 
[17, 19]. Methylxanthines compete with other purines for 
receptor binding sites on adenosine receptors because of 
their similar chemical structures. Thereby, a competitive 
inhibition of adenosine, an endogenous purine partici-
pating in many processes in the airways including bron-
choconstriction and chronic inflammation, may cause 
bronchodilation. Furthermore, methylxanthines promote 
surfactant production, mucociliary clearance, and reac-
tive oxygen species scavenging [19]. Aminophylline, a 
methylxanthine and a non-selective PDE inhibitor used 
in this study, is a combination of theophylline with eth-
ylenediamine in a 2:1 ratio. Although aminophylline is 
less powerful and has a shorter half-life than theophyl-
line, the addition of ethylenediamine enhances the water 
solubility and antioxidant effects [20]. Besides pulmonary 
effects [21, 22], aminophylline demonstrates cardiovas-
cular effects [23, 24], reduces migration of neutrophils, 
a rich source of elastase, into the lungs, preventing pro-
teolytic pulmonary injury [22], and mitigates protein 
leakage from the pulmonary capillaries and generation of 
pulmonary oedema [25], what is likely attributable to an 
increase in cAMP/cGMP in the lung.

In this study, the anti-inflammatory activity of the non-
selective PDE inhibitor aminophylline was evaluated in 
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an experimental model of ARDS prepared in adult rab-
bits. We hypothesized that intravenous (i.v.) aminophyl-
line may alleviate inflammation and oxidative imbalance 
and may thus reduce the lung injury and improve the 
lung function.

Results
Lung function parameters
Repetitive lung lavage caused a severe worsening in all 
observed lung function parameters; the P/F  ratio, OI, 
VEI, Cdyn, Cstat, MAP, and Raw had been significantly 
altered at the time point Model in ARDS group com-
pared to Control (all p < 0.001), while P/F ratio < 26.7 kPa 
was considered for appropriate to reach the moderate 
ARDS according to the Berlin definition [1]. The deterio-
ration of respiratory parameters in the untreated ARDS 
group persisted until the end of the experiment (Fig.  1, 
Table  1). There were no significant differences between 
the animals in baseline values (BV) of respiratory param-
eters nor differences in these parameters between the 

two injured groups (ARDS vs. ARDS/AMINO) at the 
time point of ARDS (all p > 0.05).

Aminophylline obviously improved the lung function 
parameters (Fig. 1, Table 1). Significant improvements in 
P/F  ratio, OI, SatO2, and Raw were observed in ARDS/
AMINO group compared to the ARDS group (all p < 0.01) 
immediately after administration of the therapy (30’ Th), 
while significant differences in VEI, PaCO2, pH, Cstat and 
Cdyn occurred later. All the mentioned differences per-
sisted until the end of the 4 h observation period.

Inflammation and oxidation in lung tissue
Levels of pro-inflammatory cytokines TNFα, IL-1β, -6, 
-8, -13, -18, RAGE (a marker of lung epithelial injury), 
S1P  (marker of endothelial injury), nitrite/nitrate and 
nitrite were significantly elevated in the lung tissue in 
the ARDS group compared to the Control (Fig. 2). Vice-
versa, the level of anti-inflammatory cytokine IL-10 was 
decreased in the ARDS group compared to the Con-
trol group. The effect of aminophylline therapy was 
reflected in decreased levels of the observed markers: for 
ARDS/AMINO vs. ARDS group: IL-8 (p = 0.0042), IL-6 

Fig. 1  Changes in the respiratory parameters. (A) Ratio of the partial pressure of oxygen to the fraction of inspired oxygen (P/F ratio, kPa), (B) 
Oxygenation index (OI), (C) Ventilation efficiency index (VEI), and (D) Dynamic lung compliance (Cdyn, mL/kPa) before (basal value, BV) and after 
induction of ARDS and within 4 h after the therapy administration in the Control group (n = 8), ARDS group (n = 8), and ARDS group treated with 
aminophylline (ARDS/AMINO; n = 8). Data are presented as mean ± SD. Statistical comparisons: for ARDS vs. Control ****p < 0.0001; for ARDS/AMINO 
vs. ARDS +p < 0.05, ++p < 0.01, +++p < 0.001; ++++p < 0.0001
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(p = 0.0013), TNFα (p < 0.0001), IL-1β (p = 0.0659), IL-10 
(p = 0.0140), IL-13 (p = 0.0240), IL-18 (p = 0.0007), RAGE 
(p = 0.0003), S1P (p = 0.0047), nitrite/nitrate (p = 0.0003), 
nitrite (p = 0.0363).

Both observed markers of oxidative damage, 
3-nitrotyrosine (3NT) as an indicator of protein oxi-
dation (p = 0.0043), and thiobarbituric acid reactive sub-
stances (TBARS) as an indicator of lipid peroxidation 
(p = 0.0008) increased significantly in untreated injured 
animals compared to controls (ARDS vs. Control). Ami-
nophylline therapy decreased the levels of oxidative 
damage compared to untreated ARDS (3NT, p = 0.0150; 
TBARS, p = 0.0112). On the other hand, the total anti-
oxidant capacity (TAC) increased significantly in ami-
nophylline-treated lung compared to untreated ARDS 
group (p = 0.0002) (Fig. 3).

Lung oedema and protein content in BALF
Lung oedema expressed as a wet-dry lung weight ratio 
(W/D) of the lung tissue increased after lavage-induced 

lung injury compared to controls (p < 0.0001), and 
similarly, total protein content in BALF (p < 0.0001) 
increased for ARDS vs. Control. Aminophylline ther-
apy significantly reduced the formation of lung oedema 
(p = 0.0001), as well as the total protein content 
(p = 0.0139) compared to the untreated ARDS group 
(Fig. 4).

Discussion
ARDS represents a stereotypic progress through several 
phases after pulmonary or extrapulmonary insults. At 
first, alveolar macrophages produce mediators that cause 
inflammatory cells to accumulate in the lungs and evoke 
lung tissue damage. Pathologic impairment of vascular 
permeability in the alveolar epithelial barrier and apopto-
sis and/or necrosis of type I and II alveolar cells could be 
the result of induced inflammation and associated release 
of pro-inflammatory mediators. Pulmonary oedema, sur-
factant inactivation, and the deposition of dead cells and 

Table 1  Respiratory parameters. Mean airway pressure (MAP, kPa), static lung compliance (Cstat,  mL/kPa) airway resistance (Raw, 
kPa/L/s), arterial partial carbon dioxide pressure (PaCO2, kPa) oxygen saturation (SatO2, %) and pH before (basal value, BV), after ARDS 
induction and within 4 h after the therapy administration in the Control group (n = 8), ARDS group (n = 8), and ARDS group treated 
with aminophylline (ARDS/AMINO; n = 8). Data are presented as mean ± SD. Statistical comparisons: for ARDS vs. Control *p < 0.05, 
**p < 0.01, ***p < 0.001, **** p < 0.0001; for ARDS/AMINO vs. ARDS +p < 0.05, ++p < 0.01, +++p < 0.001; ++++p < 0.0001

BV Model 30’ Th 1 h Th 2 h Th 3 h Th 4 h Th

MAP (kPa)
  Control 0.76 ± 0.06 0.88 ± 0.13 0.86 ± 0.14 0.86 ± 0.16 0.84 ± 0.19 0.85 ± 0.18 0.87 ± 0.19

  ARDS 0.79 ± 0.08 1.09 ± 0.09 * 1.01 ± 0.13 1.02 ± 0.14 1.06 ± 0.17 * 1.02 ± 0.16 1.06 ± 0.17 *

  ARDS/AMINO 0.80 ± 0.05 0.90 ± 0.14 0.90 ± 0.12 0.91 ± 0.19 0.94 ± 0.15 0.92 ± 0.14 0.87 ± 0.11 +

Cstat (mL/kPa)
  Control 0.016 ± 0.002 0.016 ± 0.002 0.016 ± 0.002 0.017 ± 0.001 0.017 ± 0.001 0.017 ± 0.001 0.016 ± 0.002

  ARDS 0.013 ± 0.003 0.008 ± 0.001 **** 0.009 ± 0.002 **** 0.008 ± 0.002 **** 0.009 ± 0.002 **** 0.009 ± 0.002 **** 0.008 ± 0.001 ****

  ARDS/AMINO 0.016 ± 0.002 0.011 ± 0.002 0.011 ± 0.004 0.012 ± 0.003 ++ 0.011 ± 0.003 0.011 ± 0.002 0.011 ± 0.003 +

Raw (kPa/L/s)
  Control 4.51 ± 0.79 4.62 ± 0.91 4.94 ± 1.02 4.44 ± 0.83 4.70 ± 0.77 4.51 ± 0.66 4.61 ± 0.80

  ARDS 4.29 ± 1.95 12.55 ± 4.03 **** 14.70 ± 5.06 **** 15.22 ± 5.18 **** 14.45 ± 5.37 **** 15.14 ± 5.56 **** 17.38 ± 6.41 ****

  ARDS/AMINO 4.72 ± 0.89 10.17 ± 6.43 8.36 ± 3.84 +++ 8.69 ± 4.57 +++ 10.18 ± 4.38 + 9.90 ± 4.80 ++ 9.74 ± 4.97 ++++

PaCO2 (kPa)
  Control 4.39 ± 0.67 4.54 ± 0.63 4.34 ± 0.58 4.29 ± 0.56 4.08 ± 0.64 4.04 ± 0.57 4.00 ± 0.70

  ARDS 3.67 ± 0.86 6.76 ± 1.35 **** 6.56 ± 1.51 **** 6.50 ± 1.34 **** 6.06 ± 1.59 **** 6.19 ± 1.69 **** 6.28 ± 1.92 ****

  ARDS/AMINO 4.22 ± 0.43 6.07 ± 1.24 6.01 ± 1.31 6.01 ± 1.20 5.55 ± 1.32 5.39 ± 1.31 5.10 ± 1.18 +

SatO2 (%)
  Control 99.90 ± 0.00 99.89 ± 0.03 99.90 ± 0.00 99.89 ± 0.03 99.89 ± 0.03 99.89 ± 0.03 99.89 ± 0.03

  ARDS 99.89 ± 0.04 95.56 ± 2.43 ** 94.13 ± 1.44 ** 91.03 ± 13.19 **** 92.11 ± 8.96 **** 94.37 ± 3.57 **** 93.44 ± 4.06 ****

  ARDS/AMINO 99.90 ± 0.00 97.96 ± 1.72 98.33 ± 1.29 + 98.05 ± 1.72 ++++ 98.73 ± 1.36 ++++ 99.24 ± 0.99 ++ 99.44 ± 0.67 ++++

pH
  Control 7.49 ± 0.07 7.46 ± 0.09 7.41 ± 0.05 7.37 ± 0.03 7.32 ± 0.05 7.27 ± 0.06 7.24 ± 0.05

  ARDS 7.54 ± 0.06 7.22 ± 0.07 **** 7.21 ± 0.08 **** 7.19 ± 0.09 **** 7.15 ± 0.10 **** 7.10 ± 0.11 **** 7.03 ± 0.11 ****

  ARDS/AMINO 7.50 ± 0.07 7.27 ± 0.10 7.23 ± 0.08 7.22 ± 0.07 7.19 ± 0.07 7.18 ± 0.06 + 7.16 ± 0.07 +++
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Fig. 2  Concentrations of inflammatory cytokines (A) IL-8, (B) IL-6, (C) TNFα, (D) IL-11β, (E) IL-10, (F) IL-13, (G) IL-18, (H) RAGE (all expressed in 
pg/mL), (I) S1P (expressed in ng/mL), (J) nitrite/nitrate and (K) nitrite (expressed in NOx micromolar concentration of NOx) in the lung tissue 
homogenates of healthy ventilated animals (Control; n = 8), ARDS animals (n = 8) and ARDS animals treated with aminophylline (ARDS/AMINO; 
n = 8) after 4 h of therapy. Data are presented as mean ± SD. Statistical comparisons: for ARDS vs. Control *p < 0.05, **p < 0.01, ***p < 0.001; for ARDS/
AMINO vs. ARDS +p < 0.05, ++p < 0.01, +++p < 0.001; ++++p < 0.0001

Fig. 3  Levels of (A) a marker of oxidative modifications of proteins (expressed in nanomolar concentration of 3-nitrotyrosine, 3NT), (B) a marker 
of lipid oxidation (thiobarbituric acid-reactive substances, TBARS, expressed in micromolar concentration of malondialdehyde), and (C) total 
antioxidant capacity (TAC, expressed in micromolar concentration of copper reducing equivalents (CRE)) in the lung tissue of healthy ventilated 
animals (Control; n = 8), in animals with ARDS (ARDS; n = 8) and ARDS animals treated with aminophylline (ARDS/AMINO group; n = 8) after 4 h 
therapy. Data are presented as mean ± SD. Statistical comparisons: for ARDS vs. Control **p < 0.01, ***p < 0.001; for ARDS/AMINO vs. ARDS +p < 0.05, 
+++p < 0.001; ++++p < 0.0001
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debris along the alveoli including hyaline membranes are 
the result of these alterations, which reduce lung compli-
ance and affect gas exchange in the lungs [2, 26]. Inflam-
matory mediators such as IL-1, IL-6, TNFα, and IL-18 
regulate the inflammatory process that is generated by 
immune cells [27].

PDEs are enzymes catalyzing the metabolism of intra-
cellular cAMP and cGMP that are expressed in a vari-
ety of cell types and respiratory diseases [28, 29]. cAMP 
is therefore increased by inhibiting its degradation by 
PDEs. PDE inhibitors play a role in airway smooth mus-
cle relaxation and inhibition of cellular inflammation or 
other immune responses [30] and may also be helpful in 
treating severe respiratory diseases.

In this study, we focused on the effects of an intra-
venously administered non-selective PDE inhibi-
tor aminophylline on the inflammatory response, 
pro-inflammatory cytokine production, oxidative damage 
and oedema formation, and ultimately on the respiration 
and gas exchange during the acute phase of experimen-
tal ARDS. Ideally, an animal model of ARDS should be 
a model in which pathologic process maximally mimic 
clinic situation in patients, such as a neutrophilic alve-
olitis, deposition of hyaline membranes and formation of 
microthrombi. In our experiments, rabbits were used as 
the optimal animal model of ARDS. Larger animals such 
as pigs and rabbits have IL-8, which is one of the most 
important neutrophil chemoattractants in humans, and 
are ideal for complex physiologic measurements [31]. In 
addition, for evaluating lung function parameters and 
use of artificial ventilation rabbit lungs are more suitable, 
the size and diameter of the airways are similar to in the 
term neonate, than mouse or rat lungs. We are also aware 
of several interspecies differences in the innate immune 
response (i.e., in TLR receptors, mononuclear-phago-
cyte system, NO production, and chemokines and their 
receptors) that may reduce the translation of results from 

animal studies to clinics. However, we consider that the 
selected animal model is appropriately chosen to test our 
hypothesis.

Lavage-induced imbalance in the alveoli and associated 
inflammation lead to deterioration of alveolar-capillary 
membrane integrity and influx of plasma proteins and 
activated inflammatory cells into the alveoli. This process 
affects the function of pulmonary surfactant and ventila-
tion-perfusion mismatch, and thus respiration. Repeated 
lung lavage led to worsening of lung function parameters 
(P/F, OI, VEI, Cdyn, MAP, Cstat, Raw, SatO2, PaCO2) within 
minutes after the insult, what is consistent with the find-
ings of other authors [32–34]. In untreated ARDS group, 
respiratory failure persisted until the end of the experi-
ment probably due to surfactant dysfunction caused by 
interaction with leaked plasma proteins (albumin and 
fibrinogen) and/or inflammation [35]. In our study, the 
therapy with the PDE inhibitor aminophylline improved 
lung function parameters and gas exchange compared to 
ARDS animals. We observed a rapid improvement in OI 
and the P/F ratio within the first 30  min after the ami-
nophylline administration, and this beneficial effect per-
sisted until the end of the experiment. These findings are 
consistent with previous studies which have shown that 
nonselective PDE inhibitors (e.g., pentoxifylline, amino-
phylline) can improve lung function by effective enhanc-
ing oxygenation and ventilation parameters [36–39].

In ARDS treatment, it is essential to manage the sys-
temic and also pulmonary inflammatory response. The 
early phase of ARDS is characterized by neutrophil-
mediated inflammation, lung cell injury and apoptosis 
while neutrophil activation and burst in the lungs play a 
key role in the progression of ARDS. In our experimen-
tal model, increased levels of pro-inflammatory cytokines 
(IL-8, IL-6, IL-13, IL-18, TNFα, and IL-1β) were observed 
in the lung tissue of ARDS animals. These results are 
consistent with previous findings [40, 41]. However, 

Fig. 4  Formation of lung oedema expressed as (A) wet-dry lung weight ratio (W/D) and (B) protein content in BAL fluid (mg/mL) in healthy 
ventilated animals (Control; n = 8), in animals with ARDS (ARDS; n = 8) and in ARDS animals treated with aminophylline (ARDS/AMINO; n = 8). Data 
are presented as mean ± SD. Statistical comparisons: for ARDS vs. Control ****p < 0.0001; for ARDS/AMINO vs. ARDS +p < 0.05, +++p < 0.001
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the aminophylline therapy decreased the levels of the 
observed pro-inflammatory cytokines in the lung tis-
sue compared to the ARDS group. This may be attrib-
utable to the fact that increased intracellular secondary 
messenger cAMP due to activation of adenylyl cyclase 
affects a broad spectrum of cellular functions; modulates 
transcription factor nuclear factor-kappa B (NF-κB) and 
expression of pro-inflammatory cytokines (e.g. IL-1, IL-6, 
IL-12, IL-13, and TNFα) and regulates expression of anti-
inflammatory interleukins [16, 42–44]. In addition, sig-
nificantly decreased level of anti-inflammatory cytokine 
IL-10 was found in the lung tissue of ARDS animals, 
likely due to an imbalance between anti-inflammatory 
response and serious inflammatory response in ARDS 
animals [45]. The administration of aminophylline sig-
nificantly prevented the reduction in IL-10 levels in our 
study as well as in the study by Elaidy [46]. Elevated IL-10 
signaling can inhibit pro-inflammatory cytokine produc-
tion through direct targeting of immune effector types, 
but can also indirectly modulate immune function by 
preventing macrophage and dendritic cell maturation, 
thus limiting the host’s co-stimulatory, antigen presenta-
tion, and chemokine secretion capacity of the host [47, 
48].

The lung tissue injury may be additionally caused by 
the oxidation of proteins and lipids due to neutrophil 
overactivation, especially due to oxidative neutrophil 
burst. Proteinases, cationic polypeptides, cytokines, 
and free radicals of reactive oxygen and nitrogen spe-
cies (RONS) are among the cytotoxic and immune cell 
activating agents released by neutrophils [49]. After 
lavage-induced lung injury, significantly increased levels 
of protein nitrosylation (3-nitrotyrosine, 3NT) and lipid 
peroxidation products (TBARS) were detected in the 
lung tissue. Similar oxidation-induced lung damage was 
confirmed in several studies, demonstrating increased 
levels of RONS in alveolar spaces during ARDS [50–52]. 
After aminophylline therapy, the levels of TBARS and 
3NT in lung tissue decreased significantly compared to 
untreated ARDS animals, while, the total antioxidant 
capacity (TAC) increased significantly after the therapy. 
The anti-inflammatory and antioxidant effects of nonse-
lective PDE inhibitors at different doses have been dem-
onstrated in various models of injury models [46, 53, 54], 
since RONS production can be reduced due to achieving 
a high local concentration of aminophylline in the air-
ways [55].

Other marker evaluated in this study is receptor for 
advanced glycation end products (RAGE). RAGE is a 
membrane receptor expressed in alveolar type (AT)-1 
epithelial cells of the lung and a marker of epithelial 
injury [56]. RAGE controls a variety of cellular processes 
such as cell proliferation and migration, inflammation, 

apoptosis, and microtubule stabilization [57, 58]. Activa-
tion of RAGE plays a role in cell signaling and propaga-
tion of the pro-inflammatory response [59–62]. In our 
study, a significantly higher level of RAGE in ARDS ani-
mals was found which was associated with the severity 
of pulmonary physiological disturbances (P/F  ratio and 
compliance). These results are consistent with the previ-
ous study, where RAGE levels correlated with oxygena-
tion [63].

Deterioration of the lung endothelium was demon-
strated by sphingosine-1-phosphate (S1P). S1P is highly 
expressed in the lung endothelium, where it promotes 
survival and barrier function [64, 65]. S1P’s role as a key 
regulator of endothelial barrier function is attributed to 
its signaling through S1P1  & S1P3  that activates down-
stream Rho GTPases and rearrangement of cytoskeleton 
[66]. Elevated concentrations of S1P are associated with 
barrier disruption, as it was observed in ARDS animals 
in our study. On the other hand, increases in cAMP by 
inhibition of PDE, e.g. by aminophylline, may improve 
endothelial barrier functions and support cell–cell junc-
tions [67].

Damage of endothelial and epithelial cells by the above 
mentioned bioactive compounds, results to increased 
permeability across the alveolar-capillary membrane and 
formation of pulmonary oedema. Large numbers of acti-
vated neutrophils can damage the alveolar epithelium, 
probably by the release of toxic intracellular molecules 
that induce the dissolution of tight junctions [49]. The 
formation of alveolar oedema containing high molecu-
lar weight plasma proteins worsens the gas exchange 
and increases the risk of disordered repair after exten-
sive alveolar epithelial injury [10, 68, 69]. In our study, 
the degree of lung oedema was calculated from a ratio of 
wet and dry lung weight (W/D). The ARDS group had a 
significantly higher W/D value compared to the control 
group, indicating increased accumulation of pulmonary 
fluid in the pulmonary interstitium. Furthermore, the 
ARDS group had a significantly higher level of total pro-
teins in their BALF. Similar findings had been reported 
by other authors [33, 68]. In this study, aminophylline 
therapy decreased the formation of lung oedema and the 
protein content in BALF compared to the ARDS group. 
These results are also consistent with the previous studies 
[70–72].

Conclusion
In conclusion, aminophylline as a non-selective PDE 
inhibitor has a potential to be an effective anti-inflam-
matory drug as it reduced levels of cytokines and oxida-
tive modifications in the lung tissue and prevented the 
formation of lung oedema. Inhibition of local inflamma-
tion alleviated respiratory insufficiency, as indicated by 
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improved lung function parameters. Demonstration of 
potent anti-inflammatory activity of aminophylline on 
the lung tissue and enhancing respiration in experimen-
tal ARDS as well as long-term positive experience with 
the clinical use of this drug in the treatment of several 
respiratory diseases suggest a potential of aminophyl-
line also for ARDS. However, before this treatment can 
be recommended, further research on optimum dosing, 
delivery protocol, potential adverse effects etc. should be 
performed.

Materials and methods
Animal instrumentation
Adult New Zealand white rabbits, body weight (b.w.) 
2.5 ± 0.2 kg were supplied by the certified animal breed-
ing station (VELAZ, Czech Republic) and handled 
according to the Federation of European Laboratory Ani-
mal Science Associations (FELASA) standards [73]. Ani-
mal experimental protocol was approved by the National 
Veterinary Board of Slovakia and the local Ethics Com-
mittee of the Jessenius Faculty of Medicine in Martin, 
Comenius University.

The animals were instrumented as described previ-
ously [74, 75]. After initial sedation, a tracheotomy with 
an endotracheal cannula insertion was performed and 
the right femoral artery and vein were cannulated, a. 
femoralis for blood sampling and monitoring of arterial 
pressure, and v. femoralis for continuous intravenous (i.v.) 
anaesthesia infusion (Zoletil, 10 mg/kg/h) and for admin-
istration of therapy. The animals were mechanically ven-
tilated (Aura V, Chirana, Slovakia) in a volume-controlled 
mode with a tidal volume (VT) of 6 ml/kg, positive end-
expiratory pressure (PEEP) of 5 cm H2O, respiratory rate 
(RR) of 40 breaths per minute (bpm), inspiratory-to-
expiratory ratio (I:E) of 1:1 and inspired oxygen fraction 
(FiO2) of 1.0 for the entire duration of the experiment. 
Respiratory parameters were recorded before (basal 
value, BV) and after reaching the criteria for Model of 
lung injury (see below), and 30’, 1 h, 2 h, 3 h and 4 h after 
administration of therapy. Finally, the animals were sacri-
ficed under deep anesthesia by i.v. injection of potassium 
chloride.

Experimental protocol
After 15  min of stabilization period (VT 6  ml/kg, PEEP 
5 cmH2O, RR 40 bpm, I: E 1:1, FiO2 1.0), lung injury was 
induced by repetitive lung lavages with saline (30 ml/kg, 
37° C) through an endotracheal tube in the semi-upright 
right and left lateral positions of the animal with followed 
suction. The process was repeated with 2 min intervals of 
stabilization between the lavages until PaO2 in the arte-
rial blood decreased to < 26.7  kPa in two measurements 

5 and 15 min after lavage, what equals a moderate degree 
of ARDS [1].

The animals were randomized to three groups (n = 8 
for each group): (1) Control group, healthy ventilated 
animals; (2) ARDS group, animals with ARDS without 
therapy; (3) ARDS/AMINO group, animals with ARDS 
treated with single dose of i.v. aminophylline (1  mg/kg 
b.w. diluted with saline up to volume of 1 ml, Syntophyl-
lin, Hoechst-Biotika, Slovakia), The therapy was adminis-
tered slowly over 2 min, while Control group and ARDS 
group received the same volume of saline as placebo. 
Subsequently, all animals were mechanically ventilated 
for an additional 4 h with the previously mentioned ven-
tilatory settings.

Lung function parameters and derived indexes
Electrocardiographic monitoring using subcutaneous 
electrodes, arterial pressure monitoring through a cath-
eter in a. femoralis connected to an electromanometer, 
tracheal airflow and VT measured by the heated Fleisch 
head connected to a pneumotachograph were carried 
out continuously using a multichannel recorder Power-
Lab 8/30 (AD Instruments, Germany). Partial pressures 
of oxygen and carbon dioxide (PaO2, PaCO2), oxygen 
saturation (SaO2) and acid–base balance parameters in 
arterial blood were measured by a blood gas analyser 
(RapidLab TM348, Bayer Diagnostics, Germany). Ventila-
tion parameters, VT, FiO2, minute ventilation, RR, peak 
inspiratory pressure (PIP), PEEP, mean airway pressure 
(MAP), static and dynamic lung compliance (Cstat, Cdyn), 
and airway resistance (Raw) were measured by in-build 
sensors and calculated automatically by software of ven-
tilator Aura V (Chirana, Slovakia). The lung function 
parameters were calculated: P/F as the ratio between 
arterial PaO2 and FiO2; oxygenation index (OI) as (MAP 
x FiO2)/PaO2; and ventilation efficiency index (VEI) as 
3800/[(PIP – PEEP) x RR x PaCO2].

Post‑mortem analyzes.
Left lung was lavaged by saline (3 × 10  ml/kg) and the 
bronchoalveolar lavage fluid (BALF) was centrifuged 
for 15  min at 1500  rpm. Tissue samples from the right 
lung were immediately shock frozen and stored at -70° 
C until biochemical analyzes were performed or used to 
assess the degree of lung oedema. The levels of inflam-
matory and oxidation markers were determined in 10% 
(weight/volume) lung tissue homogenate in 0.1 M phos-
phate buffer (PBS, pH 7.4). The concentrations of IL-8, 
IL-6, TNFα, IL-1β, IL-10, IL-13, IL-18, and sphingosine-
1-phosphate (S1P) were quantified using the rabbit-spe-
cific ELISA kits (USCN Life Science Inc., Wuhan, China), 
and concentration of receptor for advanced glycation end 
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products (RAGE) was measured by ELISA kit by MyBio-
Source (San Diego, California, USA), while data were 
expressed in pg/ml. Oxidative modifications were deter-
mined using kits by Cell Biolabs Inc. (USA). OxiSelect™ 
Nitrotyrosine ELISA Kit for protein oxidation expressed 
3-nitrotyrosine in nanomolar concentration (nM 3NT), 
and OxiSelect™ TBARS Assay Kit for lipid oxidation 
expressed malondialdehyde in micromolar concentra-
tion (μM MDA). Total antioxidant capacity (TAC) was 
determined using an ELISA kit by Cell Biolabs, Inc. (San 
Diego, California, USA), while data were expressed in 
micromolar concentration of copper reducing equiva-
lents (μM CRE). All biochemical analyzes were per-
formed according to the manufacturers’ instructions.

The extent of lung oedema was expressed as a wet-to-
dry (W/D) lung weight ratio. Strips of the right lung were 
weighed before and after drying in an oven at 60° C for 
48 h to calculate the W/D ratio. The total protein content 
in BALF was determined by the Bradford colorimetric 
method, as described previously [76].

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
8.0.1 (USA). Data normality was tested by the Shap-
iro–Wilk test. All evaluated variables were distributed 
normally; therefore, one-way ANOVA with Welch’s cor-
rection was used to test differences between groups and 
Tukey’s post hoc test to test the parameters with dynamic 
changes. A p value below 0.05 was considered statistically 
significant. The results are presented as mean ± standard 
deviation (SD).
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