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Abstract
The inflammatory process, orchestrated against a variety of injurious stimuli, is composed of three
inter-related phases; initiation, propagation and resolution. Understanding the interplay between
these three phases and harnessing the beneficial properties of inflammation whilst preventing its
damaging effects, will undoubtedly lead to the advent of much needed therapies, particularly in
chronic disease states. The P2X7 receptor (P2X7R) is increasingly recognised as an important cell
surface regulator of several key inflammatory molecules including IL-1β, IL-18, TNF-α and IL-6.
Moreover, as P2X7R-dependent cytokine production is driven by activating the inflammasome,
antagonists of this receptor are likely to have therapeutic potential as novel anti-inflammatory
therapies. The function of the P2X7R in inflammation, immunity and its potential role in disease will
be reviewed and discussed.

1. Background
Inflammation is an important physiological reaction
which occurs in response to a wide variety of injurious
agents (e.g. bacterial infection or physical trauma) ulti-
mately aiming to perform the dual function of limiting
damage and promoting tissue repair [1]. The inflamma-
tory process is often viewed as being comprised of three
closely linked phases: – initiation, propagation and reso-
lution, with current anti-inflammatory therapies designed
to limit or prevent the initiation and propagation phases.
However, it is increasingly recognised that therapies
aimed at enhancing the resolution phase will be impor-
tant in limiting the damage associated with persistent
inflammatory disease states such as rheumatoid arthritis,

chronic obstructive pulmonary diseases and artheroscle-
rosis [2].

In recent years, the role of ATP and its cognate receptors in
the inflammatory process has been recognised. In particu-
lar, the P2X7 receptor (P2X7R) which is expressed prima-
rily (though not exclusively) on cells of haemopoietic
origin [3] is thought to play an important role in macro-
phage/microglial and granulocyte function by regulating
cytokine production and apoptosis. Moreover, as the
P2X7R is known to be up-regulated during inflammation,
antagonists of this receptor may serve as novel anti-
inflammatory agents. In this review we summarise recent
advances in the understanding of the role of the P2X7R in
inflammatory processes and highlight the potential of
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P2X7R ligands for the treatment of chronic inflammatory
diseases, focusing particularly on tuberculosis and cancer.

2. P2X7 Receptor Pharmacology
Extracellular ATP is known to activate two classes of mem-
brane-bound receptors; the metabotropic P2Y (P2Y1,
P2Y2, P2Y4, P2Y6 and P2Y11–14), and ionotropic P2X
(P2X1–7) receptors with the pharmacology, distribution
and putative functions of these receptors extensively
reviewed [4-6]. Of the P2 receptors, the P2X7R has
attracted considerable interest as a consequence of its
unique biological properties. Brief activation of the P2X7R
by ATP or its stable analogue 2',3'-O-(benzoyl-4-ben-
zoyl)-ATP (BzATP) results in the opening of a non-selec-
tive cationic channel. However, upon prolonged
stimulation, the P2X7R forms an aqueous pore that allows
the passage of hydrophilic molecules of up to 900 Da,
which can ultimately lead to cell death [7], probably by
colloido-osmotic lysis [8]. In contrast, transient receptor
activation can induce pseudoapoptosis, a process which is
readily reversible [9]. The activation of this receptor has
now been associated with the stimulation of a plethora of
downstream signalling cascades resulting in the release of
a number of inflammatory mediators. Principle amongst
these is interleukin-1β (IL-1β), the processing and release
of which is critically dependent upon P2X7R activation
and is discussed extensively below. As with all P2X recep-
tors, elucidating the role of the P2X7R has been hampered
by a paucity of receptor selective agonists and antagonists.
BzATP, widely viewed as a selective agonist of the P2X7R,
exhibits greater potency for other P2X and P2Y receptors
[10-12]. Similarly, it is important to appreciate that oxi-
dised ATP (oATP), although often presented as a P2X7R-
specific antagonist, can attenuate pro-inflammatory sig-
nalling by mechanisms distinct from P2X7R activation
[13,14]. Although a number of putatively selective P2X7R
antagonists have recently been described [15-17], the
effects of these agents in animal models of disease has yet
to be published.

3. The role of the P2X7R in inflammatory cell 
function
Since nucleotides (such as ATP) are normally retained
within the cytoplasm of a cell, their presence in the exter-
nal milieu (e.g. during the process of cytolysis [7]) are
thought to provide 'danger' signals, inducing antigen pre-
senting cells to initiate the innate immune response [18].
Importantly, innate immunity can be initiated by a variety
of cytokines such as IL-1β, IL-18, IL-6 and tumour necrosis
factor-α (TNF-α), all of which can be produced by P2X7R
activation (vide infra). In contrast, chronic exposure to
low-dose ATP activates dendritic cells and macrophages to
secrete anti-inflammatory cytokines (IL-10 and IL-1 recep-
tor antagonist (IL-1RA)) suppressing inflammation and
favouring the development of a Th2 response [18]. These

observations suggest that the immune and/or inflamma-
tory response can be redirected when deemed to be detri-
mental to the host. The putative role of the P2X7R in such
processes is discussed below.

3.1. P2X7R regulation of cytokine production in 
haemopoietic cells
It has been clear since the cloning of the P2X7R 10 years
ago [19], that this channel is predominantly expressed on
cells of haemopoietic origin such as monocytes, macro-
phages and microglia. More importantly, as activation of
these cell types is associated with increased expression of
the P2X7R, this ultimately leads to an amplification of the
downstream production of the pro-inflammatory
cytokines IL-1β and IL-18, and in turn IL-6, IL-8 and TNF-
α. As over-production of these cytokines is detrimental,
particularly in chronic disease states, and underlies the
pathophysiology of a range of peripheral and central dis-
orders, controlling their release is paramount.

3.1.1. The role of P2X7R in IL-1β production
In recent years, a great deal of attention has been devoted
to elucidating the mechanisms of release of the pro-
inflammatory leaderless cytokine IL-1 from monocytes
and macrophages. Originally produced as 31-kDa precur-
sors, the two IL-1 isoforms, pro-IL-1α and pro-IL-1β, are
subsequently cleaved by interleukin-converting enzyme
(ICE; also known as caspase-1 [20]) to produce the
mature 17-kDa forms [21]. IL-1α and IL-1β are thought to
have identical biological actions, although IL-1β, unlike
IL-1α, is inactive in its immature form [21]. The mecha-
nism of IL-1β release has been extensively studied in vitro,
although there are only a limited number of molecules
capable of inducing controlled release, and whether these
processes reflect the in vivo situation remains unclear.
Upon release, IL-1β is known to elicit diverse responses,
including the activation of macrophages, T-cells and sig-
nalling cascades, as well as the induction of cyclooxygen-
ase type 2 (COX-2) and fever [22]. IL-1 has been shown to
be important in many diseases including rheumatoid
arthritis [23], multiple sclerosis [24], asthma [25] and
chronic obstructive pulmonary disease [26]. It is therefore
clear that IL-1β is of particular importance in the initiation
and propagation of an inflammatory response, with its
functions and therapeutic potential extensively reviewed
[22,27].

Originally, cell death by apoptosis was reported to stimu-
late the production and release of mature IL-1β, although
the mechanism was not identified [28]. The release of
mature IL-1β appeared to require two consecutive stimuli
[29], with LPS stimulation in monocytes only producing
pro-ICE and pro-IL-1β [30]. The latter authors reported
that ATP-stimulated K+ efflux was important for the
release of mature IL-1β [30], with Ferrari and colleagues
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subsequently suggesting that it was P2X7R-mediated, and
independent of apoptosis [31]. This was latterly con-
firmed in pharmacological [32] studies and those using
P2X7R knockout mice [33,34], with the activation of the
P2X7R by ATP producing a fall in cytoplasmic K+ concen-
tration which in turn stimulates processing of pro-ICE to
ICE, and thereby inducing release of mature IL-1β (Figure
1; [35]). Indeed, in an elegant series of studies Surprenant
and colleagues have subsequently demonstrated that ATP-
induced activation of the P2X7R results in the shedding of
microvesicles which contain mature IL-1β [36] and more
recently IL-1RA [37]. With high concentrations (0.5–5
mM) of ATP required for optimal activation of P2X7R-
mediated IL-1β release in vitro [38], alternative endog-
enous agonists that could produce significant P2X7R stim-
ulation have been sought. Interestingly, several cationic
host defence peptides (CHDP; also known as antimicro-
bial peptides) have recently been shown to mediate post-
translational processing of IL-1β in LPS-primed mono-
cytes. Although the mechanisms of action of the porcine
CHDP protegrin-1 and -3 have been shown to be P2X7R-
independent [39], three studies have now proposed that
P2X7R activation underlies some of the immunomodula-
tory effects of the human CHDP, LL-37 [38,40,41]. LL-37
is the major active cleavage product of the only human
cathelicidin hCAP18, is upregulated in infection and
inflammation [42,43], and in addition to broad-spectrum
antimicrobial activity and direct anti-endotoxic effects,
LL-37 has a number of immunomodulatory roles [44]. LL-
37 has now been shown to induce caspase-1 activation
and secretion of mature IL-1β in LPS-primed monocytes,
in the absence of cytotoxicity, through P2X7R activation
[38]. Furthermore, recent studies have demonstrated that
concentrations of LL-37 as low as 250 ng/ml, and well
within the physiological range, can inhibit apoptosis in
human neutrophils, in a P2X7R-dependent manner
involving the PI3-kinase pathway [40,41]. Such studies
indicate that in addition to extracellular ATP, the endog-
enous, inducible CHDP, LL-37 may activate the P2X7R on
key innate immune effector cells to modulate cytokine
release. Finally, as compounds such as Tenidap, which is
being evaluated for its anti-inflammatory and anti-
arthritic properties also appear to inhibit the release of IL-
1β [45], whilst sensitising the P2X7R on macrophages to
the cytotoxic effects of ATP [46], future studies may show
that the P2X7R could be regulated by a range of ligands.

The importance of, and the mechanisms through which
the P2X7R regulates the production of the pro-inflamma-
tory cytokines IL-1β and IL-18, and potentially the innate
immune response, was recently and beautifully described
by Mariathasan and colleagues [47]. These authors
showed that the P2X7R is up-stream of the inflammas-
ome, an important complex of cytosolic proteins that are
known to regulate caspase-1 activation and ultimately the

processing of IL-1β and IL-18. With inflammasome dys-
regulation known to produce inflammatory disorders
such as Muckle-Wells syndrome and neonatal onset mul-
tisystem inflammatory disease, it is clear that inhibiting
inflammasome activation with P2X7R antagonists could
affect the outcome of a range of inflammatory disorders
[47]. However, one must remember that the P2X7R may
not be the only purinergic receptor involved in IL-1β
release. A recent study has shown ATP-dependent Ca2+

release from intracellular stores (endoplasmic reticulum)
is also involved in the secretion of pro-IL-1β, although it
was not independently capable of releasing mature IL-1β
[48]. As discussed above, K+ efflux was also reported to be
necessary for the release of mature IL-1β, with Brough and
colleagues (2003) proposing that ATP may stimulate both
P2X and P2Y receptors [48]. The importance of P2Y recep-
tor stimulation and Ca2+ release from intracellular stores
remains to be determined.

P2X7R-mediated regulation of IL-1β has also been dem-
onstrated within the central nervous system where micro-
glia are the resident monocytic cells. In a seminal study in
1997, Ferrari et al [49] reported that ATP induced IL-1β
production in cultured microglial cells through the activa-
tion of the P2X7R. Subsequent studies showing that cul-
tured microglia from P2X7R knockout mice do not release
IL-1β following exposure to LPS and ATP [50] support the
role for P2X7R in IL-1β production, albeit in vitro. P2X7R
up-regulation has been observed in response to a variety
of inflammatory brain insults, underpinning the view that
P2X7R antagonists may be of therapeutic use for the treat-
ment of several disorders including stroke, traumatic
brain injury (TBI), multiple sclerosis and Alzheimer's dis-
ease [3,51-53]. Since IL-1β has been reported to induce
COX-2 in various tissues including glia, it has been pro-
posed that a vicious cycle occurs whereby ATP release
(from cell death for example) leads to P2X7R activation,
IL-1β release, COX-2 induction and further cell death with
consequent ATP release; this type of self-perpetuating
cycle may underlie lesion expansion particularly in stroke
and TBI. Once selective P2X7R antagonists become com-
mercially available it will be possible to test the impor-
tance of this receptor in these processes. However, it is
interesting to note that non-specific antagonism of P2X
receptors by PPADS, and the inhibition of IL-1β, and
COX-2, have all been reported to be effective in animal
models of stroke and other neurodegenerative disorders
[51,54]. Intriguingly, another function attributed to the
P2X7R that is important in neuropathology is microglial
production of superoxide anion [55]. The significance of
P2X7R regulation of superoxides was underlined by the
observation that P2X7R expression was up-regulated
around β-amyloid plaques in a mouse model of Alzhe-
imer's disease [55]. It was also subsequently shown that in
human microglia, β-amyloid-induced cytokine release
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(e.g. IL-1β) was found to be modulated by ATP, probably
via the P2X7R [56].

Understandably, polymorphisms in the genes encoding
IL-1, its receptor, and IL-1RA have been found to be asso-
ciated with a range of diseases including rheumatoid
arthritis, systemic lupus erythematosus, atherosclerosis
and tuberculosis [57]. As a result of the importance of the
P2X7R in IL-1β processing and release, polymorphisms in
this unique ion channel have been investigated and to
date, in excess of 260 polymorphisms have been identi-
fied for the P2X7R [58,59]. One such polymorphism is the
single nucleotide substitution at position 1513 of the
P2X7R gene which changes a glutamic acid to an alanine

at amino acid position 496 (Glu496Ala), and leads to loss
of function of the receptor [60]. It is interesting to note
that this polymorphism decreased the ATP-induced K+

efflux subsequently delaying the ATP-induced release of
IL-1β. The fact that IL-1β release was delayed rather than
abrogated indicates that there are compensatory or redun-
dant mechanisms present [61]. However there is now evi-
dence from P2X7R polymorphism studies, that those
associated with a loss of function mutation have a reduced
sensitivity to inflammation [62].

In the absence of commercially available potent and selec-
tive P2X7R antagonists, P2X7R knockout mice have pro-
vided new insights into the in vivo role of this receptor.

Summary of the production of active IL-1βFigure 1
Summary of the production of active IL-1β. This process can be divided into 3 stages. Stage 1: LPS stimulates monocytes/
macrophages (M∅) to produce pro-ICE and pro-IL-1β. Stage 2: ATP stimulates the P2X7R expressed on M∅ to cause a fall in 
intracellular K+ concentration ([K+]i) which in turn converts pro-ICE to ICE. Stage 3: LPS-primed M∅ following ATP stimula-
tion results in activated ICE which converts inactive pro-IL-β to active IL-1β. It should be noted that this process is intracellular 
and the figure is for illustrative purposes only (see text for references).
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Labasi and colleagues [34] reported that peritoneal mac-
rophages from P2X7R deficient mice were unable to pro-
duce mature IL-1β in response to LPS, or ATP application,
or with a combination of both stimuli. This study also
compared the induction of monoclonal anti-collagen-
induced arthritis in P2X7R-deficient mice and wild-type
littermates, with the former group demonstrating reduced
susceptibility to, and severity of disease [34]. It was there-
fore suggested that, in normal mice, endogenous ATP is
present in sufficient concentrations at sites of inflamma-
tion to activate the P2X7R [34], (an area that has attracted
some scepticism based on in vitro work with the addition
of exogenous ATP [38]). However, as described earlier,
care must now be taken in interpreting results observed in
vivo, as although ATP was originally thought to be the only
endogenous agonist of the P2X7R, recently other physio-
logical agents such as LL37 (see above) and NAD [63]
have been reported to activate the P2X7R at lower concen-
trations. New studies in P2X7R knockout mice continue to
indicate that this receptor plays a role in a number of con-
ditions in addition to arthritis and include multiple scle-
rosis, hepatitis and pain [34,64-66].

3.1.2. The role of P2X7R in IL-18 production
In addition to IL-1β secretion, the P2X7R has been impli-
cated in the synthesis and release of the related leaderless
cytokine IL-18 (interferon-γ-inducing factor), which is
also produced through cleavage of pro-IL-18 by ICE
[47,59,67], although it has not yet been extensively stud-
ied. In contrast to IL-1β, secretion of IL-18 was found to
be less dependent on LPS-priming [68], although conflict-
ing data was presented by Mehta et al who found IL-18
production to be LPS-dependent [69]. Indeed it has been
shown that individuals expressing the Glu496Ala P2X7R
polymorphism produce significantly less IL-18 when their
monocytes are stimulated by ATP [61]. We have also
shown that in LPS primed, BzATP stimulated, human
monocytic THP-1 cells, both IL-1β and IL-18 release is
inhibited by P2X7R antagonists (Finlayson et al., unpub-
lished observations). The importance of IL-18 in general
inflammatory processes, and its suitability as a therapeu-
tic target have been extensively discussed [70], however
the simultaneous inhibition of both IL-1β and IL-18 by
P2X7R antagonism has its obvious attractions.

3.1.3. The role of P2X7R in TNF-α production
In general, TNF-α is regarded as a pro-inflammatory
cytokine that is produced in response to injury, exerting a
number of important roles in the immune system and
during inflammatory responses. It is of particular interest
in neuropathology where this dual role is most clear, with
TNF-α having both neurotoxic and neuroprotective effects
[71-74]. It appears that microglia, the principal immune
cells of the central nervous system, have enhanced P2X7R
expression following inflammatory insults (see above)

[3,75]. However, as mentioned previously, ATP may act as
a 'danger' signal, which recruits microglia to damaged
areas of the brain through P2Y rather than P2X receptors
[76]. In a rat model of neuronal injury, stimulation of the
P2X7R by ATP has been shown to protect neurones by
releasing TNF-α [77]. In contrast to TNF-α release in rat
microglia, Kucher and Neary reported that the P2X7R was
probably responsible for the inhibition of TNF-α release
in rat LPS-stimulated astrocytes [78]. Indeed, these
authors proposed that this could be a mechanism to sense
the severity of damage and alter the inflammatory
response appropriately. There are also some reports by
Perregaux et al [68] that show ATP alters TNF-α produc-
tion in human monocytes. As the effects of TNF-α in the
CNS will be dependent upon the circumstances of its
release, and may differ during the acute response to injury
versus the long-term recovery from injury [79], it is vital to
understand these effects to facilitate the development of
novel therapeutic agents.

In addition to the effects that P2X7R polymorphisms have
on IL-1β production, it has also been noted that individu-
als harbouring such polymorphisms have reduced plasma
TNF-α levels (but higher levels of the anti-inflammatory
cytokine IL-10) relative to normal subjects [62]. Results
from this study suggested that during infectious perturba-
tions, 15% of healthy individuals exhibited anti-inflam-
matory mediator responses, which was correlated with the
level of P2X7R pore activity. While normal pore activity
appeared to increase microbial clearance, reduced pore
activity may provide some protection from autoimmune
disorders as those with an anti-inflammatory cytokine
profile are less likely to mount an adaptive immune
response to self tissues [62]). Since the P2X7R is important
in the production of both TNF-α and IL-1β and as inhibi-
tors of both are in clinical use for the treatment of rheu-
matoid arthritis [80] and other inflammatory conditions,
such observations possibly underlie why AstraZeneca,
Pfizer and Abbot amongst others are currently developing
P2X7R antagonists.

3.1.4. The role of P2X7R in IL-6 Production
In rheumatoid arthritis ATP is found in the synovial fluid
where a number of P2X7R-expressing cells including mac-
rophages are present [81,82]. In joint diseases such as
rheumatoid arthritis and in other conditions such as
atherosclerosis the P2X7R has also been implicated in the
secretion of the pro-inflammatory cytokine IL-6 from
fibroblasts [83]. In atherosclerosis fibroblasts are likely to
be exposed to increased concentrations of ATP because of
its secretion from platelets and at sites of chronic inflam-
mation [84]. In a more recent study the same authors have
shown that fibroblasts from type-2 diabetic patients have
increased sensitivity to ATP, which is likely to contribute
to diabetic vascular disease [85]. Furthermore, although
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mast cells have received little attention with regard to the
P2X7R, it has been known for some time that these cells
express this unique receptor (originally described as the
P2Z receptor) along with several other P2X and P2Y recep-
tors [86]. In addition to inducing cell death, ATP-stimula-
tion of the P2X7R on murine mast cells has been shown to
increase the expression of several pro-inflammatory
cytokines, including IL-6 and TNF-α [87]. Considering the
role of mast cells, especially in allergic inflammation, it
would appear pertinent to re-examine the role of the
P2X7R given its therapeutic potential in this area. Finally,
new in vivo evidence has been presented supporting the
use of P2X7R antagonists as anti-inflammatory and anti-
pyretic agents (where excessive pro-inflammatory
cytokine production or high fever is harmful to the host
[88]). These authors provided important new insights
into LPS-induced febrile response in rats, and showed that
the ATP released from activated immune cells stimulated
cytokine release which then initiated the febrile response
[88]. These authors suggested that the P2X7R plays a cen-
tral role [88], which is perhaps unsurprising given that the
cytokines IL-6, IL-1β and TNF-α all act as endogenous
pyrogens [89].

3.2. P2X7R regulation of granulocyte function and cell 
death
It is well known that granulocytes play a critical role in
acute inflammation, with polymorphonuclear neu-
trophils (PMNs; 95% of circulating granulocytes) and
eosinophils of particular interest. PMNs are phagocytic
cells that play a critical role in the host defence against
bacterial and fungal infections, whereas eosinophils are
primarily involved in the host defence against parasites,
and function in the pathogenesis of allergic and immuno-
logical disease. In general, granulocytes are recruited to
sites of inflammation where they release inflammatory
mediators such as leukotriene B4, platelet activating factor
and IL-8. However in the event of the failed clearance of
apoptotic PMNs these inflammatory mediators can lead
to tissue destruction and are thought to underlie the
pathophysiology of diseases such as asthma, rheumatoid
arthritis and atopic dermatitis [90-92].

3.2.1. P2X7R mediated modulation of apoptosis in PMNs
The process of cell death is fundamental to many aspects
of physiology and pathophysiology, and of great impor-
tance to the regulation of inflammation. Apoptosis is a
process of controlled cell death in which cells undergo
well characterised morphological changes, including the
classical features of chromatin condensation, cell shrink-
age, and the formation of apoptotic bodies [93]. In con-
trast to necrotic cell death, apoptotic cell death is a
predominantly non-inflammatory process in which the
membranes of cells remain intact. This allows the cyto-
toxic granule contents of cells such as PMN to remain

enclosed within the cytoplasmic membrane while the cell
is phagocytosed, thereby minimising tissue damage. Fur-
thermore, phagocytosis of apoptotic cells, unlike other
particles, has been shown to inhibit the release of pro-
inflammatory mediators including IL-1β, IL-8 and TNF-α
[94]. However, failure of rapid phagocytosis can result in
secondary necrosis of the apoptotic cell leading to tissue
damage and inflammatory infiltrate (Figure 2). Thus, reg-
ulation of innate immune effector cell apoptosis, in par-
ticular that of short-lived granulocytes, is critical to the
induction, maintenance and resolution of inflammatory
processes [95]. Apoptosis is regulated at a cellular level by
the expression and activation of the Bcl-2 family of pro-
teins and the components of the caspase pathways, which
dictate the lifespan and mode of cell death in such cells
[96]. Importantly, recent studies indicate that P2X7R acti-
vation may modulate a number of cell death processes
through effects upon these key regulators of apoptosis.

As described above, the human cathelicidin LL-37 inhib-
ited PMN apoptosis in a P2X7R-dependent manner
[40,41]. Stimulation of PMN with LL-37 was shown to
upregulate expression of the Bcl-2 family protein Mcl-1, a
key rapid response component which promotes PMN sur-
vival [97], and to inhibit the cleavage and activation of the
critical apoptotic regulator pro-caspase-3 [98,99]. Interest-
ingly, whereas lower levels of LL-37 acted primarily as a
neutrophil survival factor, higher levels appeared to pro-
mote necrotic cell death while inhibiting apoptosis [41].
Thus stimulation of the P2X7R has the capacity to exert a
potent effect upon neutrophil survival. These data indi-
cate that PMN express functional P2X7R, but the cellular
localisation of these receptors in this cell type remains
unclear. P2X7R expression on human cells has been dem-
onstrated on PMN, HL-60 promyelocytes and granulo-
cytic differentiated cells, and is reported to increase with
granulocytic differentiation [100]. However, one report
has suggested that human PMN have an intracellular pool
of P2X7R, with little or no surface expression [101]. Irre-
spective, these studies suggest that P2X7R activation might
extend the lifespan of PMN at sites of infection and
inflammation, and modulate the mechanism of cell death
in these cells.

In contrast to the effects observed in neutrophils, pro-
longed P2X7R activation with extracellular ATP has been
shown to induce apoptosis in other cell types, including
mast cells and epithelial cells [9,102,103]. In addition,
murine whole blood exposed to ATP demonstrated a near
complete loss of monocytes, and a decrease in lym-
phocytes, but no change in PMN numbers [34]. This effect
was not seen in P2X7R-deficient mice, indicating a P2X7R-
mediated induction of cell death in these cells [34]. This
induction of apoptosis has been proposed to involve the
opening of cation-selective membrane pores, and to be a
Page 6 of 14
(page number not for citation purposes)



Journal of Inflammation 2007, 4:5 http://www.journal-inflammation.com/content/4/1/5
calcium-independent, ROCK-1-dependent pathway [9].
Whereas prolonged or excessive P2X7R activation with
ATP induces apoptosis, transient activation induces a state
of pseudoapoptosis in epithelial cells [9]. Under these
conditions, P2X7R activation results in a series of very
rapid and reversible effects, including calcium-dependent
translocation of plasma membrane phosphatidylserine,
loss of mitochondrial membrane potential (without cyto-
chrome c release), disruption of the actin filament/micro-
tubule network and membrane blebbing. These data
suggest that the P2X7R can be associated with two differ-
ent pathways, inducing pseudoapoptosis or apoptosis in
epithelial cells. These effects on cell death, assuming the
physiological ligand is ATP, are most likely to occur at
sites of tissue damage where ATP is released in considera-
ble quantities [104]. Interestingly, LL-37 has also been
shown to induce eukaryotic membrane permeability [38]
and been implicated in the induction of apoptosis in epi-
thelial cells [105]. Thus, although the possible role for
P2X7R in mediating these latter effects remains to be
determined, it is tempting to speculate that alternative
agonists such as LL-37 could induce P2X7R-dependent
apoptosis, and the safe removal of infected cells in an

inflammatory environment, even in the absence of high
concentrations of ATP.

Thus, an intriguing contrast exists between the effects of
P2X7R stimulation on cell death pathways in different
host innate immune effector cells. Nevertheless, the con-
sequences in each case may enhance the inflammatory
response and the clearance of infection in acute infection,
but have potentially deleterious effects in chronic inflam-
matory conditions. Indeed, Chen and Brosnan have
shown P2X7R knockout mice to be more susceptible to
autoimmune encephalomyelitis (a model for multiple
sclerosis), attributing this susceptibility to reduced apop-
totic activity in lymphocytes [64]. A further understanding
of these processes is anticipated to facilitate the develop-
ment of novel therapeutic agents capable of modulating
inflammation via P2X7R-mediated effects on cell death
pathways.

3.2.2. P2X7R and cytokine production in eosinophils
Ferrari et al [106] were the first to show that the P2X7R was
present on eosinophils, with Mohanty et al [107] showing
one year later that this expression was dependent upon

Possible outcomes of an inflammatory responseFigure 2
Possible outcomes of an inflammatory response. Tissue damage (inflammation initiation) can lead to cell death by apop-
tosis or necrosis. The balance between these two types of cell death can determine the outcome of the inflammatory response 
e.g. propagation (leading to chronic inflammation) or resolution. Resolution is more common when cell death is predominantly 
apoptotic, however, the phagocytosis of apoptotic or necrotic cells is also an important determinant of the outcome of inflam-
mation. As can be seen, the P2X7R may be critical to determining the outcome of an inflammatory response.
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stimulation by interferon-γ (IFN-γ). This stimulation-
dependent expression contrasts with a more recent study
which showed functional P2X7R were expressed endog-
enously on eosinophils and that inhibition of the P2X7R,
abrogated agonist (BzATP) induced IL-8 release from eosi-
nophils [108]. This is interesting in light of the observa-
tion that asthmatics secrete more IL-8 from their
peripheral blood eosinophils than normal individuals
[109]. Furthermore, as IL-8 is chemotatic for neutrophils
[110] and CD16+ natural killer cells [111] this suggests a
role for IL-8 in the initiation and propagation of the
inflammatory response [108]. As ATP can be released
upon tissue damage [104] and in response to inflamma-
tory stimuli [49] (both of which may be present in
asthma) it is possible that the P2X7R would be activated,
resulting in IL-8 production and propagation of the
immune response (Figure 3). This simplified description
of part of the interplay between inflammatory cells and
the mediators released, again suggests that the P2X7R may
be a potential target for therapeutic intervention: how-
ever, these complex interactions are not yet fully under-
stood. A better understanding of the basic
pathophysiology of the initiation of inflammation will
allow us to determine whether more specific therapies
such as P2X7R regulation would prevent excessive inflam-
matory reactions, suppress acute inflammatory reactions
and possibly augment the healing process following tissue
damage [112].

4. Therapies directed at influencing the P2X7R
To date the majority of studies have focused on inhibiting
the P2X7R to abrogate its downstream production of pro-
inflammatory cytokines, with a number of reports now
highlighting the potential benefit of P2X7R antagonists.
Inhibiting the production of the undesirable excess of
pro-inflammatory mediators such as IL-1β and TNF-α
which cause the inflammatory state in many immune dis-
orders is likely to be advantageous. In other circum-
stances, such as M. tuberculosis infection, activating the
P2X7R may prove beneficial in bacilli eradication by
encouraging infected macrophages to die by apoptosis
rather than necrosis. This could introduce a number of
problems, most notably being a systemic increase in
inflammatory mediators and increased apoptosis in all
cells expressing the P2X7R. A contrasting problem could
exist for P2X7R antagonists, as the suppression of any nat-
ural P2X7R-dependent apoptosis could result in an
increased susceptibility to autoimmune disease and car-
cinogenesis (vide infra). However, P2X7R-deficient mice
have been described as having generally suppressed
immune responses, without being immunocompromised
[34]. Only when selective agonists and antagonists are
widely available can any such assertions be addressed,
although it is important to consider them as part of the

broader recognition of the P2X7R as a potential therapeu-
tic target.

4.1. The P2X7R, multinucleated giant cells and tuberculosis
In granulomatous disorders, monocytes or macrophages
often fuse to form multinucleated giant cells (MGCs)
[113], which results in increased cytokine production,
non-phagocytic antigen internalisation, and disposal of
infected or damaged monocytes. The antimicrobial activ-
ity of monocytes actually decreases with maturation to
macrophages [114], whereas it is enhanced upon MGC
formation [115]. An early study showed that the P2X7R
may be important in the formation of MGCs [116], with
Falzoni et al [117] speculating later that the P2X7R is
involved in the final step of MGC formation (membrane
fusion), as the receptor was found to cluster at sites of cell-
to-cell interactions. They also showed that the P2X7R does
not affect chemotaxis, cell aggregation or the expression of
adhesion molecules and indicated that other factors may
play an important role in the earlier stages of MGC forma-
tion [117]. However, there is new evidence to suggest that
ICAM-1, in association with the P2X7R, may be important
in this process [118-120].

Tuberculosis is a granulomatous disease caused by infec-
tion with Mycobacterium tuberculosis (M. tuberculosis), with
the pathogen residing and replicating within macro-
phages. It still represents a major health burden, as a con-
sequence of the emergence of antibiotic-resistant strains
and co-infection with the human immunodeficiency virus
(HIV) [121]. Following infection, part of the host
immune response involves the initiation of a T-helper cell
response against M. tuberculosis, with the subsequent acti-
vation of macrophages enabling them to become myco-
bactericidal [122,123]. This T-helper response also
stimulates the formation of granulomas, which, as noted
above, are characterised by P2X7R-expressing MGCs. In
1994 Molloy et al observed that apoptosis of an infected
macrophage, but not necrosis, resulted in decreased
mycobacterial viability [114] and that M. Tuberculosis-
infected macrophages undergo apoptosis by a TNF-α-
dependent mechanism [124,125]. However, pathogenic
strains have been shown to reduce this TNF-α effect by
increasing IL-10 production [126]. This anti-inflamma-
tory cytokine then induces the release of soluble TNF-α
receptor 2 (sTNFR2) from alveolar macrophages which
inactivates TNF-α, thus inhibiting TNF-α-dependent
apoptosis and ultimately favouring mycobacterial growth
[126]. Interfering with this mechanism could therefore
lead to the development of a new therapeutic strategy
aimed at treating tuberculosis.

With P2X7R activation known to be associated with cell
death, Lammas et al [127] suggested that the P2X7R may
play a role in the apoptosis of infected macrophages and
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the accompanying mycobacterial death. The authors
clearly showed that ATP-induced mycobacterial death was
not a consequence of reactive oxygen or nitrogen species
production, membrane disruption, or via any direct toxic
effect [127]. The finding that apoptosis of infected macro-
phages is TNF-α dependent may provide an explanation
as to why P2X7R are involved in mycobacterial death,
however, to date, P2X7R-dependent TNF-α production
has not been investigated in alveolar macrophages. Fur-
ther evidence for involvement of the P2X7R in apoptosis
of infected macrophages was provided in a study utilising
P2X7R knockout mice [128]. However, again it was noted
in this study that there are likely to be additional puriner-
gic receptors that contribute to loss of mycobacterial via-
bility, confirming an earlier observation by Sikora et al
[129]. In 2000, it was found that extracellular ATP pro-
moted the killing of virulent M. Tuberculosis in a phos-
pholipase D (PLD) dependent manner [130], with further
research suggesting that the mycobactericidal activity was
due to M. tuberculosis-containing phagosomes fusing with
lysosomes. ATP appeared to act through both P2X7R-
dependent and independent mechanisms, with this proc-
ess dependent upon increased cytosolic calcium and PLD
[131]. More recently it has been shown that infection with
the attenuated strain M. tuberculosis H37Ra inhibited
P2X7R signalling [132] and in the same study cyclosporin
A (an inhibitor of mitochondrial permeability transition
(MPT), which is associated with increased mitochondrial

cytochrome c release, necrotic macrophage death with
resultant uncontrolled mycobacterial replication) was
shown to re-establish P2X7R function in infected macro-
phages, and restore the antimycobacterial mechanisms
associated with apoptosis [132].

Further evidence highlighting the potential importance of
the P2X7R in tuberculosis has been provided by looking at
receptor polymorphisms. Loss-of-function P2X7R poly-
morphisms have been shown to contribute to the variabil-
ity in susceptibility to mycobacterial infections [133],
perhaps through abolition of ATP-mediated killing of
mycobacteria [134]. It appears that infected macrophages
from individuals with polymorphisms in the P2X7R gene
were resistant to apoptosis, which, as noted above, is
important in the killing of intracellular mycobacteria
[135,136]. It is therefore clear that the P2X7R should be
investigated as a potential new therapy for treating tuber-
culosis.

4.2. The role of the P2X7R in cancer
The connection between inflammation and cancer was
first described by Rudolf Virchow in 1863 (see reference
[137] and references therein), with the interplay having
been studied extensively since. For example, it has now
been shown that there is an increased likelihood of a can-
cer developing at a site of chronic inflammation [138]. A
polymorphism in the TNF-α promoter resulting in

Diagrammatic representation of the interplay between inflammatory mediators and cellsFigure 3
Diagrammatic representation of the interplay between inflammatory mediators and cells. Tissue damage or 
inflammatory stimuli results in ATP release which activates the P2X7R causing eosinophils to release IL-8 which amplifies the 
initial inflammatory response.
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enhanced plasma TNF-α has been associated with an
increased incidence of prostate cancer [139], while a pol-
ymorphism increasing IL-1β production conferred a
greater susceptibility to gastric cancer [140,141]. Given
the importance of the P2X7R in regulating cell death and
cytokine production it is perhaps unsurprising it may play
a role in cancer. Therefore, the development of either
P2X7R agonists or antagonists may be useful anti-cancer
agents, as agonists could kill cells, whereas antagonists
would perhaps stop proliferation.

In 1996, T lymphocytes were found to express a purinergic
receptor (suggested to be the P2X7R) which when inhib-
ited, severely decreased cell proliferation [142]. Three
years later these authors extended their findings by report-
ing that P2X7R transfection into lymphoid cells (lacking
endogenous receptor expression), sustained their growth
in serum-free medium [143]. They suggested that an ATP-
based autocrine/paracrine loop existed which supported
lymphoid cell proliferation in the absence of growth fac-
tors normally present in serum [143]. In isolation this was
an important finding because one of the six alterations
(the 'Hallmarks of cancer') thought to be essential in the
transformation of a normal cell into a cancerous cell is
'self-sufficiency' in growth signals [144]. Recently it was
shown that P2X7R transfection increased cellular energy
stores (i.e. ATP) and the resting mitochondrial potential
of transfected cells both of which gave the cells a growth
advantage [145]. As mitochondrial dysfunction is impor-
tant in apoptosis [146], any increase in resting mitochon-
drial potential would be expected to make cells resistant
to apoptosis, thus providing them with a growth advan-
tage [145] a further alteration thought to be essential in
carcinogenesis – 'evasion of apoptosis' [144]. These obser-
vations are of clear importance given the earlier observa-
tion that the P2X7R is over expressed in several cancers
[147].

In addition, the Glu496Ala P2X7R polymorphism dis-
cussed earlier produced a lack of agonist-mediated apop-
tosis in some patients with chronic lymphoblastic
leukaemia [60]. In contrast, another report found that this
polymorphism did not cause an increased risk of chronic
lymphoblastic leukaemia [148], however the situation is
clearly complex with different P2X7R polymorphisms
found to contribute to the clinical outcome of chronic
lymphoblastic leukaemia [149]. It is important that
P2X7R polymorphisms and their associations with cancer
be clarified, so that their potential as a prognostic tool can
be determined. A new paper by Carta et al [150] has sug-
gested that histone deacetylase (HDAC) inhibitors (novel
agents currently being developed as pleiotropic anti-can-
cer agents) may have potential for development as anti-
inflammatory agents as they reduced ATP-stimulated IL-
1β production via the P2X7R. The potential role of P2X7R

ligands in the treatment of cancer appears exciting and
will undoubtedly be the subject of many future investiga-
tions.

5. Conclusion
In the 10 years since the purinergic P2X7R was cloned it is
now clear that this receptor plays a number of important
functions in the immune system. The importance of the
P2X7R on macrophages is best understood, with the
P2X7R playing an important role in the formation of
MGCs and in macrophage intracellular killing of myco-
bacteria, such as M. tuberculosis. Moreover, the P2X7R is
clearly involved in secretion of cytokines by macrophages
(and other cells such as monocytes and microglia), partic-
ularly IL-1β, IL-18, TNF-α and IL-6, all of which play an
important role in mediating inflammatory responses. The
P2X7R has been shown to regulate the release of IL-8 from
eosinophils and may be expressed on PMNs, potentially
influencing their function. Although there is currently less
evidence that the P2X7R regulates cytokine production in
granulocytes, it appears to play a pivotal role in regulating
apoptosis and cell death. Therefore, the P2X7R represents
an exciting target for regulating peripheral and central
inflammation and given the appropriate disease state,
P2X7R antagonists may serve as a new class of anti-inflam-
matory compounds, capable of not only inhibiting the
initiation of inflammation, but also potentially enhanc-
ing resolution.

Abbreviations
ATP Adenosine 5'-triphosphate

BzATP 2', 3'-O-(benzoyl-4-benzoyl)-ATP

COX-2 Cyclooxygenase type 2

ICE Interleukin-converting enzyme

IL Interleukin

IL-1RA Interleukin 1 receptor antagonist

INF-γ Interferon-γ

LPS Lipopolysaccharide

MGC Multinucleated giant cell

oATP Oxidised adenosine 5'-triphosphate

P2X7R P2X7 receptor

PMN Polymorphonuclear neutrophil

TBI Traumatic brain injury
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