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Abstract
Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms 
in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes 
specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models 
and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a 
reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of 
the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. 
We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive 
review of the various studies where molecular imaging of transcriptional regulation has been applied during 
inflammation.

Introduction
Historically conventional imaging techniques as radiog-
raphy, computed tomography, ultrasonography and mag-
netic resonance imaging (MRI) were developed to
visualize anatomical properties and changes for diagnos-
tic purposes. Molecular imaging, which has emerged as a
new discipline during the last decade, attempts to visual-
ize functional properties. European Society for Molecular
Imaging defines molecular imaging as the characteriza-
tion of the dynamics of the molecular processes in the liv-
ing organisms in vivo. The imaging modalities in
molecular imaging are SPECT and PET that detect γ- and
β- radiation; MRI that detect differences in relaxation
time and optical imaging that mainly record luminescent
and fluorescent light [1]. Essentially there are two types of
molecular methods used in imaging: 1) administration of
molecular probes that recognize and bind to a particular
biochemical molecule or are activated by a specific pro-
cess (e.g. enzymatic reaction); 2) reporter genes that are
expressed in response to a gene regulatory event. To
image activation of transcription factors, most commonly
genetic constructs with a promoter coupled to reporter
gene are used. This requires introduction of engineered
genetic constructs in research animals as in transgenic

reporter mice, which has stably integrated the reporter
construct in the genome.

Inflammation involves changes in hemodynamics,
recruitment of leucocytes and platelets, and release of
numerous signaling and effector molecules. All of this is
adapted to type of tissue and stimuli (irritant, injury,
infection); additionally it is timely regulated and adjusted
to severity of insult. Ideally the inflammatory response is
initiated on insult and terminated after homeostasis is
reestablished. However, inflammation can become
chronic, which is the case for diseases like rheumatoid
arthritis and inflammatory bowel disease. The complexity
of the inflammatory response requires that its many
functional elements are controlled coordinately in some
situations and independently in others. This regulation
occurs through the specificity of recruited immune cells
and their differentiation, signaling pathways and gene
expression. Cellular protein composition is crucial for
regulation at all levels, which gives transcriptional regula-
tion a central role in orchestrating the inflammatory pro-
cess. It is suggested that various sets of genes encode the
different functional elements and that these genes are
coordinately regulated by dedicated transcription factors
[2]. For instance by using a systems biology approach in
an LPS model a combination of three transcription fac-
tors (NF-κB, ATF3, CEBP/δ) was demonstrated to coor-
dinate sustained expression of several inflammatory
genes [3]. Of these, NF-κB was regarded as the activator
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and thus illustrates how NF-κB, which is required for
most types of inflammatory responses, can engage in reg-
ulation of a specific set of inflammatory genes.

There are several hundred transcription factors
involved in inflammation. In spite of this, imaging studies
of NF-κB has dominated research in this field. NF-κB is
attractive for inflammation studies due to the early acti-
vation, and the involvement in the large numbers of sig-
naling pathways and the many genes related to immune
functions that it controls [4,5]. The NF-κB family of tran-
scription factors is composed of five members (p50, p52,
p65, c-Rel and RelB), which can form various hetero- and
homodimers. In resting cells NF-κB is retained in the
cytosol bound to Inhibitors of NF-κB (IκBs). Two distinct
NF-κB activation pathways have been described, the clas-
sical and the alternative pathway. In inflammation, the
classical NF-κB pathway is the more important of the
two, and it is activated by a large number of stimuli,
including proinflammatory cytokines, bacterial and viral
products, and stress-inducing stimuli such as γ-radiation,
ultraviolet light and reactive oxygen species. These stim-
uli induce the degradation of IκBα and the nuclear trans-
location of mainly the p50/p65 heterodimer. In addition
to being central for fighting infections and repair of tissue
damage, a number of inflammatory diseases have been
associated with elevated NF-κB activity including rheu-
matoid arthritis, inflammatory bowel disease, asthma and
cardiovascular disease [6-8]. Furthermore, results from
animal models with genetic manipulations that either
lead to increased or decreased NF-κB activity demon-
strates NF-κB's significance in regulating inflammatory
pathologies [4]. Based on such findings the development
of NF-κB modulators for treatment of inflammatory dis-
eases has been given a lot of attention.

As imaging of transcription factor activity is basically
only examined in transgenic reporter mice, we here
briefly describe this technology. Furthermore, we review
different studies related to transcription and inflamma-
tion, foremost connected to NF-κB.

Design of transgenic reporter mice
Transgenic reporter mice have genomically inserted an
engineered DNA construct (called transgene) essentially
composed of a promoter and a reporter gene. Studies
using reporter mice can determine activity of specific
promoters and transcription factors that regulate them,
which further can reflect physiological processes, disease
progression and experimental manipulations. Reporter
mice make possible non-invasive dynamic studies in liv-
ing animals; meaning that a particular biological process
can be monitored both over time and in all organs in the
same animal.

Promoters used in transgenes are in principle designed
by two approaches: natural promoters taken from a gene

of interest and artificial promoters where a set of selected
cis-elements are combined. Often combinations of the
two strategies are used. A promoter is composed of a core
promoter containing DNA elements necessary for bind-
ing the polymerase and initiations of transcription, and a
proximal promoter, placed upstream of the core pro-
moter, containing regulatory cis-elements bound by tran-
scription factors (Fig.1). In addition transgenes contain
other critical elements including polyA sequences and
translational start and stop codons. Furthermore, inclu-
sion of an intron is sometimes used to increase expres-
sion efficiency [9].

Reporter genes are genetic markers that encode easily
detectable proteins. The half-life of reporter proteins
should be within hours when studying dynamic patterns
to obtain close relationship with the biological process.
Additionally, a short half-life will prevent accumulation of
the reporter caused by potential background activity of
the promoter. Extensive accumulation of the reporter can
mask an induced expression. In basically all imaging stud-
ies of transgenic reporter mice, genes that encode biolu-
minescent or fluorescent proteins are used [10]. The
bioluminescent reporter proteins are enzymes that cata-
lyze a chemical reaction leading to light emission from an
injected substrate. The most frequently used is firefly
luciferase, but also renilla and click beetle luciferases are
proven useful. Due to the scattering properties and
absorption spectrum of animal tissue, reporter genes that
emit light with the longest wavelength are favorable [11].
For fluorescent reporter genes this is particularly critical
since autofluorescence of endogenous molecules is much
lower at longer wavelengths. There are many fluorescent
reporter genes available and new types are frequently
introduced [12]. Recently the first infrared fluorescent
protein was engineered [13]. The half-life of the fluores-
cent proteins are usually rather long, but the carboxy-ter-
minal can be modified to reduce the stability of the
protein [14,15]. Due to tissue autofluorescence, fluores-
cent imaging has much lower signal-to-noise ratio than
bioluminescent imaging. However, fluorescent imaging,
is superior for tomographic examination [11]. Optical
imaging can be performed with a relatively rapid and easy
procedure, which allows high through-put screening.

Co-regulated expression of different types of reporter
genes is required to examine the same biological process
with different imaging modalities. While biolumines-
cence is more sensitive in live animal imaging, fluores-
cent reporters are nearly always necessary for
identification of single cells in tissue samples. In clinical
imaging, expression of a therapeutic gene can be followed
by co-regulated expression of a PET reporter gene [16].
To obtain co-regulated expression of genes various meth-
ods are used such as insertion of internal ribosome entry
site (IRES) between the genes, repeated use of similar
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promoters, polyproteins, fusion proteins and bidirec-
tional promoters. IRES is commonly used, but the expres-
sion efficiency of the genes on each side of the IRES vary
according to the type of transgene and tissue [17,18].
Multiple promoters are shown to cause mutual interfer-
ence, which depends on environmental factors [19]. Poly-
proteins are proteins intermitted with a 2A-like peptide
that is "cleaved" during translation [20]. Polyproteins as
well as fusion proteins require molecular engineering,
which introduce sequence changes that can affect the
activity, stability and immunogenicity of the proteins.
Bidirectional promoters are naturally occurring in the
vertebrate genome, but have not been extensively tested
in transgenic models [21].

Transgenic mice are most frequently generated by pro-
nuclear injection of fertilized eggs [22]. With this method
the transgene is incorporated more or less randomly and
in unpredictable copies in the genome, which create two

problems. Firstly, genomic modification may unfavorably
alter the phenotype of the animals because the transgene
can be inserted in a location where it affects transcrip-
tion. Secondly, the genomic DNA surrounding the
inserted transgene can cause variable expression in differ-
ent tissues through the influence of cis-elements and
chromatin structure [23]. This is dependent on the loca-
tion of insertion and a strategy to eliminate the problem
is site specific insertion of the transgene. ROSA26 and
Hprt are well described genomic loci where integration
provides predictable and ubiquitous expression of
inserted transgene [24,25]. This method is more labori-
ous than pro-nuclear injection. The transgene is inte-
grated by homologous recombination in embryonic stem
cells, which are transferred to blastocysts for production
of chimeric mice. A strategy to prevent influence by sur-
rounding DNA of transgenes incorporated by pronuclear
injection is the use of insulator elements. These are posi-

Figure 1 Transgenic reporter mouse. A) Schematic representation of a typical transgene, which is flanked by insulator sequences and including 
relevant elements for meaningful regulation of reporter gene expression. The core promoter often contains a TATA-box for binding of polymerase II 
and a transcriptional initiation site. The proximal promoter, which contains regulatory cis-elements, is usually localized upstream to the core promoter; 
however, enhancer elements can in principal be placed in other parts of the construct. An intron is often included to increase transcription efficiency. 
The polyA sequence is necessary to stabilize mRNA while the PEST sequence is introduced to exaggerate proteasome degradation and thus decrease 
the half-life of the protein. This is important to prevent accumulation of the reporter protein and to follow dynamic changes. Finally, the reporter gene 
needs the necessary elements for successful translation such as Kozak sequence and stop codon. B-D) Imaging of a transgenic reporter mouse after 
exposure to various inflammatory stimuli. This reporter mouse contains a transgene with NF-κB sites that regulate expression of firefly luciferase gen-
erated.
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tioned at the ends of the transgene and have both
enhancer-blocking properties preventing communica-
tions from cis-elements positioned outside the transgene,
and barrier functions preventing the spread of hetero-
chromatin [26]. As an alternative to generating transgenic
reporter mice, which is time and work consuming, one
can transfect liver cells by intravenous injection of a
reporter construct and then study reporter activity in
liver [27]. One drawback is that the expression of the
reporter gene will be transient, making it difficult to per-
form longitudinal studies. Also viral vectors are used to
visualize reporters in vivo, which have the potential for
cell specific transfection [28]. To obtain the expected
expression of reporter genes composition of the trans-
genic construct should be well planned with good under-
standing of assembled gene sequences. For instance, early
versions of the firefly luciferase gene had numerous cis-
elements, which took part in regulation of gene expres-
sion [29,30]. A list of unique transgenic reporter mice
used to study gene regulation in inflammation is shown
in table 1.

Applications of NF-κB transgenic reporter models
The two first transgenic mice that convincingly showed
that NF-κB activity could be imaged in vivo either used
the HIV long terminal repeat as promoter [31] or a syn-
thetic promoter containing three NF-κB binding sites
from the immunoglobulin κ light chain promoter [32].
Both mice utilized the luciferase from firefly as reporter
gene to mediate light emission. Activation of NF-κB by
classical stimuli (LPS, IL-1β and TNFα) induced the
expression of luciferase, which could be followed in the
same animal over time and in multiple organs. Increase in
NF-κB activity during development of arthritis was visu-
alized, as well as decrease by the anti-inflammatory agent
Dexamethasone. Furthermore, NF-κB dependent
luciferase activity of individual organs was imaged after
dissection from sacrificed animals and the signal strength
in these ex vivo images was equal to the luciferase activity
recorded in tissue homogenates. This confirms that the
luminescent signal recorded in tissue reflects the actual
level of reporter protein. These reporter mice have been
used to examine the role of NF-κB during inflammation,
inflammatory mechanisms in general and to evaluate
therapeutic strategies. A selection of these studies is
reviewed in this chapter with a summary listed in table 2.

Imaging neural regulation of NF-κB
Previous observations have shown that following acute
brain injury, leukocytes are recruited particularly from
the liver to the damaged brain. To test the hypothesis that
NF-κB has a critical role in this process, the dynamics of
NF-κB activity was imaged after induction of brain injury
by intracerebral injection of IL-1β. This led to an excep-

tionally rapid NF-κB activation in the liver, suggestive of a
signal transfer that involves the neural system. To deter-
mine the role of hepatic NF-κB, it was selectively inhib-
ited by intravenous adenoviral-mediated delivery of an
IκBα super-repressor. This treatment significantly
reduced the number of neutrophils recruited to the brain
[33].

The vagus nerve is shown to stimulate anti-inflamma-
tory processes in the gut through cholinergic modulation
of macrophages [34], and in vivo imaging of the gut
region after blocking signaling from the vagus nerve by
transection showed increased NF-κB activity. Further-
more, in mice with experimentally induced colitis cutting
the vagus nerve, and thus removing the cholinergic medi-
ated anti-inflammatory signal, exaggerated the NF-κB
activity. This elevated NF-κB activity coincided with dis-
ease severity and reduction in regulatory T-cells [35].

NF-κB imaging in models of infectional diseases
Various constitutively active forms of IκB kinases have
been virally introduced in airway epithelium to test
whether activation of NF-κB pathways are sufficient to
generate lung inflammation [36]. In vivo imaging was
used to confirm up-regulation of NF-κB activity in the
lung, which also correlated well with disease parameters
as cytokines, chemokines and recruitment of neutrophils.
Imaging was also used to investigate to what extent dura-
tion of NF-κB activation correlated with outcome of lung
inflammation [37]. Models of acute or chronic lung infec-
tion were induced in reporter mice with single injection
or continuous administration of LPS, respectively. NF-κB
activation was stronger and more sustained in mice with
chronic disease, which progressed into more severe lung
injury. Furthermore, an NF-κB inhibitor (BMS-345541),
which was delivered after onset of inflammation, reduced
disease severity in parallel with reduction in NF-κB activ-
ity. Although NF-κB activity clearly correlated with dis-
ease outcome in the LPS model described above, two
other studies shows that the host defense against
Pseudomonas bacterial infection is impaired when NF-κB
activity is inhibited experimentally [38,39].

Mastitis is defined as inflammation of the mammary
gland mainly caused by microbial pathogens, such as bac-
teria. Mastitis is quite common in breast feeding women,
and in the dairy industry intra-mammary infections are
of great economical importance due to loss of milk pro-
duction. The dynamics of NF-κB activity was investigated
in a mouse model of mastitis where E.coli was inoculated
in the mammary glands of lactating mice [40]. NF-κB was
rapidly, but transiently activated, with a peak around 10
hours and termination after 24 hours. Interestingly, a sys-
temic response was revealed as a mild increase in NF-κB
activity in the liver, which also was longer lasting. This
systemic reaction was confirmed by increased circulating
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Table 1: Overview of transgenic reporter mice available for studies of inflammation

Regulatory elements of 
transgenic mice #

Reporter gene Method Features of the transgenic mice

Three NF-κB sites* separated by 
linker sequences (14 to 25 bp)
[32,35,47,48,53,65-68]

Fluc (Firefly 
luciferase)

Pronuclear injection In vivo imaging. Short half-life of reporter. 
Good induction. Used in numerous disease 
models. Distinct visualization of lymph 
nodes.
Difficult to assess single cells

Three NF-κB sites* separated by 
linker sequences (14 to 25 bp) 
Insulator sequences flank the 
transgene [40,49,51,54,69-76]

Fluc Pronuclear injection In vivo imaging. Short half-life of reporter. 
Insulators protect transgene against 
genomic interference. Used in many disease 
models.
Difficult to assess single cells.

Six NF-κB sites* separated by 
four bp. Bi-directional expression 
of two reporter genes
[77]

Fluc dEGFP Pronuclear injection In vivo imaging and detection of dEGFP in 
single cells. Short half-life of both reporters. 
Used in a brain ischemia model.
Weak dEGFP signal. Need antibodies for 
detection.

HIV-1 LTR with two NF-κB sites* 
and three Sp1 sites 
[31,36,38,41,52,78-82]

Fluc Pronuclear injection In vivo imaging. Short half-life of reporter. 
Good induction. Used in various disease 
models mainly to study lung pathology.
Difficult to assess single cells.

HIV-1 LTR with two NF-κB sites* 
and three Sp1 sites
[37]

EGFP/Fluc
fusion protein

Pronuclear injection In vivo imaging. EGFP signal detected in 
isolated macrophages. Short half-life of both 
reporters. Good induction.
Need antibodies to detect EGFP in sections.

Two NF-κB sites* [83-86] Fluc Pronuclear injection Good induction. Successfully used to study T-
cell regulation.
No demonstration of in vivo imaging.

Five NF-κB sites *[87] Fluc Pronuclear injection In vivo imaging. Short half-life of reporter.
Used in only one study.

Three NF-κB sites* [88] EGFP Site specific in HPRT-
locus

Signals detected from single cells and whole 
organs. Site specific integration prevents 
influence from regulatory elements outside 
the transgene.
In vivo imaging not shown. Stable version of 
EGFP complicates assessment of dynamic 
NF-κB regulation.

Twelve Smad 2/3 binding sites 
[55,89,90].

Fluc Pronuclear injection In vivo imaging. Used to study TGFβ signaling 
and response to injury, particularly in brain.
Difficult to assess single cells.

iNOS-promoter fragment
(1.24 kb) [57]

Fluc Pronuclear injection In vivo imaging. Reflects iNOS mRNA in liver. 
Sensitive to pro- and anti-inflammatory 
agents.
Used in only one study.
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IκBα-promoter fragment
(11.0 kb) [58]

Fluc Pronuclear injection In vivo imaging. Luciferase activity reflects 
IκBα mRNA in liver.
Used in only one study.

SAA1-promoter fragment (7.7 
kb) [59]

Fluc Pronuclear injection In vivo imaging. Luciferase activity reflects 
SAA1 mRNA in liver and protein in serum. 
Demonstrated in an acute arthritis model.
Used in only one study.

GADD45β-promoter fragment 
(10.5 kb) [60]

Fluc Pronuclear injection In vivo imaging. Reflects GADD45β mRNA in 
multiple organs. Used to study effects of 
various stressful insults (inflammation, 
oxidative stress, toxins).
Used in one study.

COX-2-promoter (endogenous) 
[91-93]

Fluc Knock-in in the COX2 
gene

In vivo imaging. Correlation between 
luciferase and COX-2 protein levels in 
multiple organs. Knock-in reflects 
endogenous promoter activity.

#Include most relevant references where the models have been used.
*Sequence of the NF-κB binding site: 5'-GGGACTTTCC-3'. This sequence is found in numerous NF-κB regulated promoters including 
immunoglobulin κ light chain and HIV LTR, and it is used in all NF-κB reporter mice generated up to now.

Table 1: Overview of transgenic reporter mice available for studies of inflammation (Continued)

levels of the acute phase protein serum amyloid A, skin lesions, and arthritic joints. Moreover, ex vivo imag-

tumour necrosis factor-α and interleukin-6. Interestingly,
in a recent work it was shown that activation of NF-κB in
mammary glands was sufficient to cause mastitis-like
symptoms such as increased apoptosis and loss of milk
production. Oppositely, specific inhibition of NF-κB in
glands of mice with mastitis prevented milk loss [41].
These results indicate that NF-κB is a critical regulator of
milk loss during infection, making NF-κB reporter mice
useful to evaluate therapeutic strategies.

NF-κB imaging in autoimmune disease
Despite intense research efforts, the etiology of most
autoimmune diseases remains obscure. It is previously
shown that B-cells can present fragments of the variable
region of their immunoglobulins, called idiotype (Id), on
their MHC class II, which further can be recognized by
T-helper cells. Such T-cells with Id-specific receptors
have been described in a number of autoimmune diseases
in humans [42-45]. In a mouse model where the collabo-
ration between Id-presenting B-cell and Id-specific T cell
are enhanced through genetic manipulation, a plethora of
autoimmune diseases correlating with autoantibody pro-
duction develops [46]. To determine the role of NF-κB
during initiation and progression of autoimmune dis-
eases, the mouse model was crossed with NF-κB reporter
mice. Imaging revealed NF-κB activation before onset of
clinical symptoms and it correlated with disease progres-
sion and autoantibody production. Activation was
observed in secondary lymphoid organs, inflamed colon,

ing of the small intestine demonstrated autoimmune dis-
ease, which had clinical parameters in agreement with
celiaki [47]. Additionally, imaging of NF-κB activation has
been used to quantify the effect of the IκB kinase 2 inhib-
itor ML120B in a model of rheumatoid arthritis. This was
verified by reduced expression of NF-κB target genes
[48]. These results suggest that in vivo imaging of NF-κB
activation is a good marker for autoimmune disease in
experimental mouse models.

Imaging of NF-κB together with new optical probes
Numerous molecular processes are involved in inflam-
mation and probes that can detect some of these events
have been developed. Imaging of NF-κB activation
together with such probes has been performed to exam-
ine correlation of different but still connected processes.
A near infrared fluorescent probe that emits light when
cleaved by the protease activity of cathepsin B and K was
utilized in a model of rheumatoid arthritis [48]. The
intensity of the probe coincided with disease severity and
NF-κB mediated luminescence intensity. Production of
reactive oxygen species is a hallmark of inflammation. A
bioluminescent probe (L-012) that reacts with some of
these reactive oxygen species was shown to be activated
in parallel with NF-κB in various inflammation models
[49].

NF-κB imaging of dietary influence
The discovery that diet affects gene regulation has been
crucial for the understanding of diet's role in health and
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disease. It has been demonstrated that dietary compo-
nents can be both pro-inflammatory and anti-inflamma-
tory. Intake of high fat diet can for instance lead to low
grade inflammation, which again is linked to metabolic
syndrome and type 2 diabetes [50]. In two related studies,
NF-κB reporter mice were fed high fat diet for several
weeks and both studies found a modest but significant
increase in NF-κB dependent bioluminescence, indicative
of low grade inflammation [51,52]. Interestingly, in one of
these studies the NF-κB target gene IκBε was chronically
elevated, whereas genetic manipulations to inhibit this
gene protected against type 2 diabetes [52]. Diet can also
contribute to a reduction in inflammation through regu-
lation of NF-κB. Previous studies showed that vitamin A
deficiency was linked to increased infection and inflam-
mation. In an attempt to clarify the relationship of vita-
min A and NF-κB activity, vitamin A deficient diet were
fed to NF-κB reporter mice to deplete the vitamin A
stores. Vitamin A deficient mice had an overall increased
NF-κB induction of 2.2 fold. Conversely, when mice on
normal diet were given a single oral dose of vitamin A in
the form of retinoic acid, NF-κB activity was rapidly and
transiently decreased [53]. This inhibition was also
observed in LPS treated mice [54]. Thus, the use of NF-
κB reporting mice may prove to be a powerful tool to
evaluate anti-inflammatory effects of other dietary fac-
tors.

Imaging TGFβ signaling
Besides NF-κB reporter mice, very few other transgenic
reporter models exists for reporting specific transcription
factors related to inflammation. One exception is the
luciferase reporter mice for the transcription factors
Smad 2 and 3 [55]. Activation of these transcription fac-
tors is the canonical signaling pathway for transforming
growth factor β (TGFβ). TGFβplays a wide role in the
immune system, and affects all populations of leukocytes
in a stimulatory or inhibitory manner [56]. The Smad
reporter mouse was used to assess global regulation of
Smad 2 and 3 activities after LPS stimulation. LPS rapidly
induced luciferase expression in liver and brain. More-
over, the signal was much more prolonged in the brain
demonstrating differences in organ regulation by TGFβ
signaling.

Imaging promoter regulation relevant for 
inflammation
In addition to imaging inflammatory regulation of single
transcription factors, several reporter mice have been
developed for studies of natural promoters involved in
inflammation. Such reporter mice are valuable both for
assessing the transcriptional regulation during inflamma-
tion and to evaluate the relative contribution of distinct

inflammatory genes. Zhang et al., have developed four
different transgenic luciferase reporter mice with pro-
moters from important response genes in inflammation:
Serum Amyloid A (SAA), inducible Nitric Oxide Syn-
thetase (iNOS), IκB and Growth arrest and DNA-dam-
age-inducible β (GADD45β). In vivo imaging following
induction of inflammation by various stimuli showed
robust activation in all the reporter mice. In addition they
showed, by exploiting specific inhibitors and activators,
that NF-κB is central to the regulation of all the promot-
ers. However, the influence of NF-κB differed between
the four. The SAA and GADD45β promoter were primar-
ily regulated by NF-κB, whereas the IκB promoter was in
addition influenced by the p38 signaling pathway and the
iNOS promoter also needed interferon regulated factor
for maximal activation [57-60].

Imaging non-conventional transgenic mice
While basically all studies of molecular imaging of tran-
scriptional regulation in inflammations is done in mice
produced by pronuclear injection there are some studies
with other methods. For instance, transfection and
expression of reporter genes can specifically be obtained
in liver following intravenous injection of naked DNA.
Such an approach has been used to image luciferase
activity under the control of NF-κB [61]. In these mice,
administration of thioacetamide or LPS showed strong
induction of liver bioluminescence and the signal was
reduced by catalase. Using the same type of method a
fusion protein between firefly luciferase and IκBα was
expressed in liver cells. Degradation of IκB is prerequisite
for activation of NF-κB. Since degradation of IκB also
leads to degradation of firefly luciferase, disappearance of
light emission will reflect NF-κB activation [62]. This
approach enables a close to real-time imaging of the NF-
κB signaling pathway. Another approach is to utilize ade-
noviral transfection. Brain nuclei have been transfected
with reporter constructs for NF-κB and AP1 and imaged
in vivo. In this study, luciferase activity could be quanti-
fied and followed over several weeks after LPS stimula-
tion [63].

Conclusion and future perspective
Molecular imaging of transcription factors is a young
research field, but has demonstrated the usefulness of
visualizing regulation of transcription factors in vivo. We
have basically only reviewed studies on NF-κB regulation
in inflammation, which have dominated this research
area. The various studies illustrate the importance and
advantage both to track activity in individual mice over
time, to quantify the relative changes in activity and to
visualize the spatial patterns of activation.
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The present reporter models of NF-κB have provided
valuable information in a variety of experiments, but still
have potential to elucidate a number of unresolved ques-
tions related to inflammation. However, NF-κB, whose
binding sites are represented in more than 200 genes, is a
rather ubiquitous marker of inflammation and it is also
present in genes not directly involved in inflammation.
Therefore, development of promoters that are more spe-
cifically regulated is attractive in order to investigate dis-
tinct functional elements of inflammation. Such
promoters must be under regulation of defined sets of
transcription factors. An important improvement in this

regard will be the ability to more precisely image gene
regulation in individual organs, and functional events
such as activation of specific cell types and productions of
distinct cytokines.

Due to the rapid evolution of imaging technology com-
bined with advances in molecular biology more quantita-
tive and localized characterization of the reporter signal
will represent an important and valuable improvement.
The studies presented in this review have utilized con-
ventional two dimensional imaging of reporter gene
activity, which indeed has created valuable information
from distinct organs such as liver, lungs, brain and intes-

Table 2: Overview of imaging studies related to transcriptional regulation in inflammation

Type of study Results

Imaging neural regulation of 
NF-κB

Hepatic NF-κB is crucial for recruitment of neutrophils to the injured brain [33].
Vagus nerve signaling regulates NF-κB activity [35].

Imaging of infection models In vivo imaging of NF-κB in lung [31].
NF-κB is sufficient to cause lung inflammation [36].
Duration of NF-κB activity is determining for lung injury [37].
Bacterial lung infection induces NF-κB. Lack of oxidative burst and targeted inhibition of NF-κB worsens 
Pseudomonas infection [38,39].
NF-κB is induced in infected mammary glands [40].
NF-κB is central for regulating milk production of mammary glands [41].

Imaging autoimmune 
disease

In vivo imaging of NF-κB during arthritis [32].
Tracking NF-κB in a transgenic model with various autoimmune diseases [47].
Evaluation of NF-κB inhibitor in arthritis. Combined imaging of NF-κB activity and protease specific near 
infrared probe [48].
Evaluation of probe for reactive oxygen species and NF-κB activity in arthritis [49].

Imaging of dietary influence NF-κB activity during high fat feeding and obesity [51].
NF-κB and its role in energy balance of obese mice [52].
Vitamin A regulates NF-κB activity [54].

Imaging host immune 
reaction

Interaction between host and biomaterial induces NF-κB [87]

Imaging TGFβ signaling Imaging Smad2/3-dependent TGF-beta signaling reveals prominent tissue-specific responses to 
inflammatory stimulus and injury [55].
Orally administered TGF-beta is biologically active in the intestinal mucosa and enhances oral tolerance 
[89].
Imaging of Smad signaling shows correlation with excitotoxic neurodegeneration [90].

Imaging regulation through 
natural promoters of 
inflammatory genes

iNOS-promoter activity used to evaluate effect of anti-inflammatory compounds [57].
Regulation of IκBα expression involves both the NF-κB and MAP kinase signaling pathways [58].
Serum amyloid A is induced by inflammatory stimuli. NF-κB is an important regulator [59].
GADD45β-promoter regulation by NF-κB and not MAPK pathway in acute inflammation [60].
Imaging Cox-2 gene expression in living animals with a luciferase knock-in reporter gene [93].

Imaging inflammation in 
non-conventional transgenic 
mice

NF-κB activation during liver inflammation in mice and prevention by catalase delivery [61].
Real-time imaging of ligand-induced IKK activation in liver [62].
Viral delivery of reporter constructs to discrete brain region used to monitor longitudinal NF-κB and AP1 
activity [63].
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tine; however, due to light scattering and poor tissues
penetration, it is difficult to localize and quantify signals
from deeper lying tissues. Information on inflammation
in specific organs is vital for the understanding of biologi-
cal mechanisms and to validate more precisely the effect
of a treatment regime. New developments of brighter ver-
sions of optical reporter proteins as well as more red
shifted fluorescent proteins is therefore crucial for
obtaining tissue specific imaging. The combination of
anatomical images (Computer tomography and MRI)
with molecular imaging is forthcoming [64] and will
clearly be utilized more extensively in anatomical charac-
terizations. Molecular imaging of transcription factor
activity in inflammation will definitively also in the future
be an essential tool to provide knowledge in basic biolog-
ical mechanisms in preclinical studies.
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