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Abstract
Background: Farnesyltransferase inhibitors (FTI) are small molecule agents originally formulated
to inhibit the oncogenic functions of Ras. Although subsequent analysis of FTI activity revealed
wider effects on other pathways, the drug has been demonstrated to reduce Ras signaling by direct
measurements. The purpose of the current study was to determine if FTI could be used to inhibit
the inflammatory activities of a known Ras-activating human oncoprotein, RET/PTC3. RET/PTC3 is
a fusion oncoprotein expressed in the thyroid epithelium of patients afflicted with thyroid
autoimmune disease and/or differentiated thyroid carcinoma. Previous studies have demonstrated
that RET/PTC3 signals through Ras and can provoke nuclear translocation of NFκB and the
downstream release of pro-inflammatory mediators from thyroid follicular cells in vitro and in vivo,
making it an ideal target for studies using FTI.

Methods: For the studies described here, an in vitro assay was developed to measure FTI inhibition
of RET/PTC3 pro-inflammatory effects. Rat thyrocytes transfected with RET/PTC3 or vector
control cDNA were co-cultured with FTI and examined for inhibition of chemokine expression and
secretion measured by RT-PCR and ELISA. Immunoblot analysis was used to confirm the level at
which FTI acts on RET/PTC3-expressing cells, and Annexin V/PI staining of cells was used to assess
cell death in RET/PTC3-expressing cells co-cultured with FTI.

Results: These analyses revealed significant mRNA and protein inhibition of chemokines Ccl2 and
Cxcl1 with nanomolar doses of FTI. Neither RET/PTC3 protein expression nor apoptosis were
affected at any dose of FTI investigated.

Conclusion: These data suggest that FTI may be applied as an effective inhibitor for RET/PTC3-
oncogene induced pro-inflammatory mediators.
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Background
Autoimmune diseases affect approximately 1 in 30 Amer-
icans [1], and can cause significant morbidity in those
affected, not uncommonly leading to death. Although the
basis for autoimmune disease in humans remains
unknown, the interaction between genetic and environ-
mental factors such as aging, chronic stress, hormones,
and pregnancy [2] is thought to play a critical role.
Although infection of the target organ has been observed
to greatly exacerbate autoimmune disease in experimental
models, no viral etiology has been found in human dis-
ease [3]. One of the most prevalent autoimmune diseases
in the U.S. affects the thyroid organ, with approximately 4
million Americans afflicted by some form of thyroid
autoimmune disease. Life-long thyroid hormone replace-
ment therapy is the present "gold standard" treatment for
thyroid autoimmune disease, but is difficult to manage:
with 12 existing dosages of thyroid hormone, many
patients are left with sub-clinical hypothyroidism and lin-
gering symptoms such as fatigue, constipation, depres-
sion, and weight gain. Importantly, this therapy does not
protect against the development of differentiated thyroid
carcinomas which may be associated with thyroid
autoimmune disease [4].

Although the cause of thyroid autoimmune disease has
yet to be defined, clinically-observed links between
autoimmune disease and cancer have been documented
for more than half a century [5,6]; [7]. Indeed, one of the
most commonly appreciated associations is chronic
autoimmune thyroiditis and differentiated thyroid carci-
noma. Although no significant increased risk for cancer
has been identified in patients with autoimmune thyroid
disease, a chromosomal translocation resulting in the for-
mation of the mutant RET/PTC fusion protein links these
pathologies [8-11]. Definitive evidence that Hashimoto's
thyroiditis is caused or exacerbated by RET/PTC3 is not yet
available, although sufficient evidence exists to support a
direct role for activated RET kinase in inducing the medi-
ators of inflammation in vitro and in vivo [12-14]. Accord-
ingly, there exists a molecular genetic abnormality that is
common to thyroid epithelial cells in cancer and autoim-
mune disease even though the actual mechanism of pro-
gression for each disease is not yet clear.

The RET/PTC family are fusion proteins that result from a
chromosomal rearrangement involving the tyrosine
kinase domain of the c-RET proto-oncogene, and are fre-
quently found in the early development of differentiated
thyroid carcinomas [15-21]. The fusion oncoprotein RET/
PTC3 (also known as RP3, indicating mouse/human gene
or protein) is the most frequent isoform that develops in
childhood thyroid cancers, and involves the partnering of
the c-RET kinase domain with the androgen receptor-
related protein RFG/ARA70. RP3 has been shown to signal

through the Ras pathway, and results in nuclear localiza-
tion of NFκB and the production of pro-inflammatory
mediators [22]. Based on an array of over 200 genes acti-
vated by RP3, two of the most highly induced are the pro-
inflammatory chemokines monocyte chemoattractant
protein-1 Mcp1 (Ccl2) and Kc/Groα (Cxcl1) [23].

Given that molecular changes may be occurring in thyroid
tissue at early stages of disease, treatments that might
ameliorate the effects of oncogene-induced inflammatory
mediator production may reduce the morbidity associ-
ated with thyroid inflammation. Presently existing com-
pounds targeting various signal transduction pathways are
available and some, like those that target Ras signaling,
have already entered the clinic. Small molecule agents
such as the farnesyltransferase inhibitors (FTI) show target
selectivity in many models [24]. FTIs represent a group of
compounds that inhibit the enzymatic properties of far-
nesyltransferase, an enzyme important for the post-trans-
lational lipid modification of membrane associated
proteins, including those of the RAS pathway. FTIs were
developed to take advantage of the membrane localiza-
tion requirements held by many of the molecules in the
RAS pathway, known to be some of the most commonly
mutated genes in human cancer [25]. By blocking the
membrane localization of RAS and associated molecules,
FTI functions to suppress proliferation and angiogenesis
by inhibiting NFκB activation and expression of NFκB-
regulated genes induced by carcinogens and inflamma-
tory stimuli [26]. Despite their potential target specificity,
low toxicity, and potential for cancer-specific targeting,
these compounds have only been marginally successful
for the treatment of advanced malignancies in clinical tri-
als. One explanation for these failures may be that FTIs
modulate alternate targets and the assumed dependency
on Ras signaling in cancer may not hold up in all stages of
tumor development. Interestingly, recent studies describe
FTIs as anti-inflammatory agents and found significant
efficacy in both cell- and animal-based models of inflam-
mation [26,27]. For this reason, we have chosen to use FTI
to study the inhibition of RP3-induced inflammatory
mediators produced by oncogene-transfected thyroid
cells. The extension of these studies provide a therapeutic
rationale for using FTI in thyroid autoimmune disease.

Methods
Materials
The farnesyltransferase inhibitor tipifarnib
(ZARNESTRA®), R115777 [(B)-6-[amino(4-chlorophe-
nyl)(1-methy-1H-imidazol-5-yl)-methyl]-4-(3- chloroph-
enyl)-1-methyl-2(1H)-quinolinone] was supplied by Dr.
David End of Johnson & Johnson, Beerse, Belgium. For
each experiment, stocks were prepared fresh daily from
R115777 powder in DMSO and protected from light.
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Cell culture
PC Cl3 rat thyrocytes previously obtained from Dr. Jeffrey
Knauf (University of Cincinnati, Cincinnati, OH, USA)
were stably transfected with human RP3 via ligation of
RP3 onto the retroviral vector, pMV7 as described previ-
ously [23]. The RP3-transfected thyrocytes (PC Cl3RP3)
were grown in Coon's Modified F12 medium (Sigma, St.
Louis, MO, USA) supplemented with 7.5% fetal bovine
serum, 2 mM L-glutamine, and 100 U/ml penicillin/strep-
tomycin. PC Cl3 cells containing pMV7 vector only (PC
Cl3pMV7) were additionally supplemented with the fol-
lowing growth factors: 10 ng/ml somatostatin, 10 ng/ml
glycine-histidine-lysine, 5 µg/ml transferrin, 10 nM
hydrocortisone, 10 µg/ml insulin, and 10 mIU/ml bovine
thyroid stimulating hormone. Cells were grown in a
water-saturated environment in 5% CO2 and 95% air at
37°C.

FTI treatment assay
PC Cl3 rat thyrocytes stably transfected with RP3 (PC
Cl3RP3) and vector control (PC Cl3pMV7) at mid-log phase
growth were trypsinized and live cells were counted using
a trypan blue stain. Cells were plated on a 12-well polysty-
rene culture dish at a cell density of 2.5 × 105 cells per well
(65 cells/mm2) suspended in 2 ml culture medium. Cells
were allowed to adhere and stabilize for 18 hours. At that
time, culture supernatants were removed, cells were
washed using room temperature 1× PBS, and 2 ml of cul-
ture medium containing FTI (at clinically-relevant con-
centrations of 10,000 nM, 1,000 nM, 100 nM, 10 nM, or
1 nM) or 2 ml of control culture medium (0 nM FTI) was
added to each well. DMSO effects (the compound dilu-
ent) were controlled for: all culture conditions including
control maintained a 0.05% DMSO concentration. Cells
were allowed to grow in the presence of FTI-containing
media for 24 hours.

RT-PCR analysis
Total cell RNA was extracted using the TRIzol method
(Invitrogen, Carlsbad, CA, USA) of RNA isolation. Precip-
itated DNA was digested with RNAse-free DNAse
(Ambion, Austin, TX, USA). Total RNA (5 µg) was dena-
tured and reverse-transcribed using SuperScript™ III
Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) in
a reaction mix containing random primers (50 ng/µl),
Oligo dT (105 ng/µl), and 0.1 M DTT for 90 minutes at
42°C. Reverse transcription was confirmed, and the pres-
ence of genomic DNA excluded, with PCR of cDNA and
similarly incubated but non-transcribed RNA using prim-
ers for glyceraldehyde-3-phosphate dehydrogenase
(G3pdh). cDNA was amplified by PCR using primers spe-
cific for rat G3pdh, rat Ccl2, rat Cxcl1, and human RP3
(breakpoint region). Amplified products for chemokine-
specific primers and h-RP3 were normalized using the
amplified product for G3pdh. PCR cycling conditions for

all reactions were: denaturation at 94°C for 4 min for 1
cycle; 20 cycles of denaturation at 94°C for 30 sec, primer
annealing at 60°C for 30 se, and extension at 72°C for 1
min; and final single extension cycle of 72°C for 7 min.
The primer sequences were: rat G3pdh [sense: 5' AGAA-
CATCATCCCTGCATCC 3'; antisense: 5' GTCCTCAGT-
GTRAGCCCAGGA 3']; rat Ccl2 [sense: 5'
CACTCACCTGCTGCTACTCATTCA 3'; antisense: 5'
GCTTGAGGTGGTTGTGGAAAAG 3']; rat Cxcl1 [sense: 5'
GCGGAGAGATGAGAGTCTGG 3'; antisense: 5' GAGAC-
GAGAAGGAGCATTGG 3']; human RP3 (breakpoint
region) [sense: 5' CCAGAGCAGAAGTCAGCATTC 3'; anti-
sense: 5' CTCTTTCAGCATCTTCACGGC 3']. The PCR
product sizes were as follows: r-G3pdh, 227 bp; r-Ccl2, 320
bp; r-Cxcl1, 215 bp; and h-RP3, 302 bp. PCR products
were visualized using gel electrophoresis (2% agarose gels
with 0.5 µg/ml of EtBr) and quantified using the BioRad
Gel Doc and Quantity One program (BioRad, Hercules,
CA, USA).

ELISA
CCL2 and CXCL1 secretion were measured using an ELISA
according to the manufacturer's protocol (Amersham/GE
Healthcare Technologies, Waukesha, WI, USA). PC
Cl3pMV7 and PC Cl3RP3 thyrocytes at mid-log phase growth
were co-cultured with FTI according to described protocol.
Culture media were collected and filtered before use in
ELISA. All values refer to the average of duplicate samples
from triplicate experiments ± s.e.m.

Western blot analysis
Immunoblotting was performed to assess protein levels of
the tyrosine kinase domain of RP3 using Ret (C-19) goat
polyclonal IgG (sc-167, Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, USA) and phosphorylated-Ret (Tyr
1062)- rabbit IgG (sc-20252-R, Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA) in PC Cl3RP3 cells following the
FTI co-culture assay described herein. Protein content was
quantified with the BioRad DC Protein Assay (BioRad
Laboratories, Hercules, CA, USA). Following separation of
protein samples (50 µg per lane) by 10–20% SDS-PAGE
(Invitrogen, Carlsbad, CA, USA), proteins were trans-
ferred to nitrocellulose membranes and probed with pri-
mary antibodies at 4°C overnight. After staining with a
corresponding pair of IRDye 800CW-coupled anti-goat
(Rockland Inc., Gilbertsville, PA; 1:10.000) and Alexa
Fluor 680 anti-rabbit (Molecular Probes; 1:10.000) sec-
ondary antibodies, respectively, proteins were visualized
with a LI-COR infrared imager (Odyssey), (LI-COR, Inc.,
Lincoln, Nebraska USA) and quantitative densitometric
analysis was performed applying Odyssey version 1.2
infrared imaging software. Phospho-RET intensities were
normalized to total-RET densitometric levels that were
not different between groups.
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FACS analysis of early-apoptotic-staining cells
The Annexin V:FITC Apoptosis Detection Kit I (BD Bio-
sciences, San Jose, CA, USA) was used according to manu-
facturer's instructions to stain PC Cl3RP3thyrocytes grown
to mid-log phase growth and co-cultured with FTI accord-
ing to the previously described protocol. Cellular uptake
of FITC-conjugated Annexin V and/or propidium iodide
was measured using a Coulter XL (Beckman Coulter, Inc.,
Fullerton, CA, USA) flow cytometer.

Statistical analysis
Results are presented as the mean ± standard error of the
mean (s.e.m.). Data were analyzed using a KS Normality
Test and determined to be of normal distribution. A Stu-
dent's t-test was used to determine the significance of each
test sample group (n = 3) compared to the control sample
group (n = 3) utilizing the program Microsoft Excel. P-val-
ues < 0.05 were considered statistically significant for
these experiments with a 95% confidence interval.

Results
RP3 induces pro-inflammatory gene expression in 
thyrocytes
Previous work has demonstrated the induction of pro-
inflammatory proteins by the RP3 oncogene [23]. To
measure the effects of FTI on these pro-inflammatory
mediators, we chose Ccl2 (Mcp1) and Cxcl1 (Kc/Groα) that
were expressed at high levels in RP3 transfectants. Baseline
expression of the housekeeping gene G3pdh, the pro-
inflammatory genes Ccl2 and Cxcl1, as well as the onco-
gene RP3 was determined using RT-PCR. The choice of
chemokines for these experiments was based on previous
data [23] which demonstrated that of over 200 differen-
tially expressed genes, Ccl2 and Cxcl1 (Kc/Groα) were two
of the top four most highly expressed genes in RP3-
expressing thyrocytes when compared to parental cells
(vector controls). Figure 1 demonstrates the gene expres-
sion of G3pdh, Ccl2, Cxcl1, and RP3 in PC Cl3RP3 and PC
Cl3pMV7 cells. There is no expression of RP3, Ccl2, or Cxcl1
by the vector control thyrocytes (PC Cl3pMV7), data which
is consistent with the lack of inflammation from these
cells. Expression of RP3 directly correlated with produc-
tion of inflammatory genes as previously described
[23,28].

FTI inhibits pro-inflammatory gene expression in RP3-
expressing thyrocytes
Increasing evidence indicates that cancer at its earliest
stages is dependent on inflammation [29-31]. Although
the cause of this cancer-associated inflammation is cur-
rently under investigation, several reports [32,33] indicate
that oncogene signaling can be directly responsible for the
production of inflammatory mediators. Here, we investi-
gated the idea that inhibition of oncogene signaling may
alleviate the downstream production of selected media-

tors. Previous experiments determined that expression of
Cxcl1 and Ccl2 were correlated with the expression of
active, but not signaling-deficient forms of, RP3 [23].

Using Cxcl1 and Ccl2 as biomarkers for RP3-induced
inflammation, we found that that serial dilutions of FTI
reduced or abrogated the expression of chemokine mRNA
(Figures 2 and 3). Indeed, RT-PCR data shown in Figure 2
revealed a dose-dependent decrease in the gene expres-
sion of both Ccl2 and Cxcl1 after RP3-expressing thyroid
cells (PC Cl3RP3) were treated with FTI; transcription of
G3pdh and RP3 itself were unaffected by the same concen-
trations of FTI, and therefore chemokine transcription was
normalized to G3pdh (data not shown). This FTI-medi-
ated inhibition of pro-inflammatory gene expression in
RP3-expressing cells is dose responsive and significant to
nanomolar FTI concentrations.

Pro-inflammatory protein secretion is inhibited by FTI in 
RP3-expressing thyrocytes
In order to further elucidate the level of FTI inhibition in
RP3-expressing cells, we quantified chemokine protein
synthesis in the presence and absence of FTI. Several
groups have shown that RP3 induces nuclear transloca-
tion of NFκB and the subsequent release of multiple
inflammatory mediators as well as Class II MHC and co-
stimulatory molecules [23,34]. Accordingly, by poten-
tially blocking the oncogene-induced signal transduction
pathway, FTI treatment should inhibit pro-inflammatory
protein secretion. ELISA data (Figure 3) demonstrates a
significant reduction in the secretion of pro-inflammatory
mediators CCL2 and CXCL1 in RP3-expressing thyrocytes
(PC Cl3RP3 cells). Reductions in protein secretion are evi-
dent at nanomolar concentrations of FTI, consistent with

Oncogene-induced expression of pro-inflammatory genes in RP3-expressing thyrocytesFigure 1
Oncogene-induced expression of pro-inflammatory 
genes in RP3-expressing thyrocytes. Shown is the base-
line gene expression of the housekeeping gene G3pdh, pro-
inflammatory genes Ccl2 and Cxcl1, and the oncogene RP3 in 
PC Cl3RP3 and PC CL3pMV7 stably-transfected thyrocytes. 
Bars depict densitometric analysis of RT-PCR data. Cells 
expressing RP3 also express the pro-inflammatory genes Ccl2 
and Cxcl1, whereas vector controls do not.
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mRNA expression data shown in Figure 2. Because inhibi-
tion of farnesylation with FTI has the potential to alter
intracellular localization of proteins other than RAS, we
evaluated the expression of the RP3 oncogene itself in
transfected cells after FTI treatment. Data shown in Figure
4 indicate that RP3 protein expression and phosphoryla-
tion was unchanged at any concentration of FTI tested.
These data provide evidence that FTI is likely acting post-
translationally to block RP3-induced signaling and not
simply inhibiting expression of RP3 itself, leading to a
subsequent reduction in pro-inflammatory mediator
expression.

FTI does not significantly affect apoptosis in RP3-
expressing thyrocytes
The argument could be made that loss of chemokine gene
expression in RP3-expressing cells treated with FTI may be
associated with cell death since high concentrations of the
agent could be toxic due to direct or indirect effects. To
investigate this possibility, PC Cl3RP3 cells co-cultured
with increasing concentrations of FTI were stained with
Annexin V and propidium iodide (PI) and analyzed by
flow cytometry. Cells that stained positive for Annexin V
but negative for PI indicated that they were in the early
apoptotic stage and thus could be distinguished from live
(negative for both markers) and late-apoptotic/dead cells
(positive for both markers). Figure 5 demonstrates no sig-
nificant difference in induction of apoptosis in FTI-treated
PC Cl3RP3 cells compared to the same untreated control
cells.

Reduced pro-inflammatory protein secretion in FTI-treated thyrocytesFigure 3
Reduced pro-inflammatory protein secretion in FTI-
treated thyrocytes. (A) Ccl2 protein secretion measured 
by ELISA from PC Cl3RP3 thyrocytes cultured with indicated 
concentrations of FTI for 24 hours. (B) Cxcl1 protein secre-
tion measured by ELISA from PC Cl3RP3 thyrocytes cultured 
with indicated concentrations of FTI for 24 hours. Significant 
reduction of protein secretion compared to control is seen 
for both chemokines. Error bars represent s.e.m. and are 
representative of three independent experiments performed 
in triplicate (n = 3). *p < 0.05, **p < 0.01.
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Discussion
The association between cancer and inflammation is well
established [33]. However, the mechanisms that govern
this association are not well understood. Two notions
have been put forth to help explain this phenomenon:
one posits that the carcinogenic nature of activated
inflammatory cells initiates transforming mutations while
another suggests that inflammation is a response to neo-
plastic transformation and is responsible for tumor pro-
gression [35]. Histochemical analyses often used to
characterize the actions of inflammatory cells at cancer
sites may not provide a complete look into the complexi-
ties of how the tumor microenvironment is operating. In
recent years, several groups [8,36] have demonstrated acti-
vation of the RET/PTC oncogene in the thyroids of
humans with autoimmune thyroiditis without thyroid
cancer. In such cases, the relationship between cancer and
inflammation could instead be interpreted with a view
that oncogenic transformation (e.g. oncogene expression)
is the basis for the observed inflammation. Along these
lines, RET/PTC3 can induce pro-inflammatory activities
from thyroid epithelial cells [23,14,13], and thus inhibi-
tion of such inflammation may have implications for dis-
ease control.

Farnesyltransferase inhibitors are a class of small-mole-
cule agents developed as a novel approach to anti-cancer
treatment, designed to target a post-translational modifi-
cation required for functionality of certain membrane-
associated proteins, including RAS. These molecules were

targeted based on evidence that many human cancers con-
tain mutations of RAS proteins. Although clinical trials of
farnesyltransferase inhibitors demonstrated low toxicity,
clinical efficacy was also low in several malignancies.
Some scientists have postulated that this may be due to a
lack of Ras signaling in later stages of tumor development,
while others look to alternate pathways potentially
affected by off- or on-target effects of FTI. These failures
notwithstanding, more recent data has demonstrated effi-
cacy of FTI as an anti-inflammatory agent [26,27] in both
cell- and animal-based models of inflammation. FTI activ-
ity has been shown to inhibit the expression of NFκB [26]
as well as pro-inflammatory cytokines such as Ccl2, Il6,
and Ifnβ [27] induced by carcinogens and inflammatory
stimuli.

We have shown here that clinically-relevant nanomolar
doses of FTI significantly reduce the expression of pro-
inflammatory mediators Ccl2 and Cxcl1, shown to be two
of the chemokines most highly induced by RP3 [23]. We
further demonstrate that this reduction is not due to a
similarly decreased expression of the oncogene itself; FTI
is likely acting post-translationally. We postulate that the
effects we have demonstrated with these experiments are
due to FTI acting to block RP3 signaling through the RAS
pathway, inhibiting NFκB activation, and resulting in
decreased expression of pro-inflammatory mediators;
however we have not provided any new evidence regard-
ing signaling in the experiments described here.

No effect of FTI on oncogene expression and phosphorylationFigure 4
No effect of FTI on oncogene expression and phosphorylation. Shown is an immunoblot analysis of RP3 and phospho-
RP3 protein expression in PC CL3RP3 thyrocytes cultured with indicated concentrations of FTI for 24 hours. RP3 protein 
expression and phosphorylation was unchanged at any concentration of FTI. The data are representative of three independent 
experiments performed in triplicate.
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The current "gold standard" of therapy for autoimmune
thyroiditis is lifelong hormone replacement therapy,
which treats the symptoms while allowing the disease to
run its course. However, failing to treat the underlying
cause of autoimmune disease leads to unabated destruc-
tion of the affected organ. Indeed, thyroid function is not
restored with simple hormone supplementation, and
many patients continue to suffer from potentially life-
threatening symptoms including obesity, depression,
infertility, and gastrointestinal abnormalities due to sub-
clinical hypothyroidism. With twelve different doses of
synthetic thyroid hormone available, achieving near-exact
levels of endogenously-produced thyroid hormone is
extremely difficult, and can lead to both sub-clinical
hypo- and hyperthyroidism. Importantly, hormone
replacement therapy does not stop the progression of dif-
ferentiated thyroid carcinomas, thought by some to be
associated with autoimmune thyroiditis [4]. Implications
from the experiments described here may suggest the

application of FTI in treating thyroid autoimmune inflam-
mation caused by oncogene signaling. Indeed, the domi-
nant role for aberrant signaling following the expression
of the RET/PTC oncoprotein has implicated the Ras and
NFκB pathways and helps to explain the production of
pro-inflammatory mediators by these transformed epithe-
lial cells [23]. The use of FTI to inhibit RP3 signaling
would represent a novel tissue-targeted therapy for thy-
roid autoimmune disease. Such an approach could pro-
vide for the maintenance or recovery of thyroid function
before the permanent loss of thyroid hormone ensues fol-
lowing irreversible autoimmune destruction. Future stud-
ies may provide a better understanding of the pathways
that are shared between autoimmune disease and cancer
of the thyroid.
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Apoptosis is unaffected in FTI-treated thyrocytesFigure 5
Apoptosis is unaffected in FTI-treated thyrocytes. 
(A) Shown are data from FITC-conjugated Annexin V and PI 
stained PC Cl3RP3 thyrocytes cultured with indicated concen-
trations of FTI for 24 hours and analyzed by flow cytometry. 
Cells staining with Annexin V only represent early apoptotic 
cells, and the percentages of this population at indicated con-
centrations of FTI are depicted in the histogram (n = 3). 
There is no significant change in induction of apoptosis at any 
concentration of FTI. (B) Shown are representative dot plots 
from flow cytometry. Error bars represent s.e.m. and are 
representative of three independent experiments.
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