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Abstract

Background: Evaluate the potential role of p38 inhibitors for the treatment of osteoarthritis using an
animal model of joint degeneration (iodoacetate-induced arthritis) and a pain model (Hargraeves assay).

Methods: P38 kinase activity was evaluated in a kinase assay by measuring the amount of phosphorylated
substrate ATF2 using a phosphoATF2 (Thr7!) specific primary antibody and an alkaline phosphate coupled
secondary antibody and measuring the OD at 405 nm. TNFa and IL-1P secretion from LPS stimulated
THP-1 monocytic cells and human peripheral blood mononuclear cells were measured by ELISA. Rats
treated with vehicle or p38 inhibitor were injected intra-articularly in one knee with iodoacetate and
damage to the tibial plateau was assessed from digitized images captured using an image analyzer. The
effect of p38 inhibitors on hyperalgesia was evaluated in rats given an intraplantar injection of carrageenan
and 4 h later the paw withdrawal time to a radiant heat source was measured.

Results: SB-203580 and VX-745 are both potent inhibitors of p38 with ICsys of 136 + 64 nMand 35 + 14
nM (mean * S.D.), respectively. Similarly, SB-203580 and VX-745 potently inhibited TNF release from LPS
stimulated human THP-I cells with ICs of 72 £ 15 nM; and 29 £ 14 nM (mean + S.D.) respectively. TNF
release from LPS stimulated human peripheral blood mononuclear cells was inhibited with ICyys 16 + 6
nMand 14 + 8 nM, (mean % S.D.) for SB-203580 and VX-745 and IL-1 was inhibited with IC;;s of 20 + 8
nMand |5 + 4 nM (mean % S.D.), respectively. SB-203580 and VX-745 administered orally at a dose of 50
mg/kg resulted in the significant (p < 0.05) inhibition of joint degeneration in the rat iodoacetate model of
45% and 31%, respectively. SB-203580 demonstrated a dose related inhibition of joint degeneration of 30,
25, 12 and 8% at 50, 25, 10 and 5 mg/kg p.o. b.i.d. in the rat iodoacetate model. Similarly, both p38
inhibitors significantly (p < 0.05) attenuated the pain response (paw withdrawal time) in the Hargraeves
hyperalgesia assay when administered orally at 30, 10 and 3 mg/kg.

Conclusion: SB203580 and VX-745 demonstrated attenuation of both cartilage degeneration and pain in
animal models and suggest that p38 inhibitors may be a useful approach for the treatment of osteoarthritis.
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Background

Osteoarthritis (OA) is a common rheumatic disease that is
characterized by a progressive loss of articular cartilage.
Cartilage degeneration results from an imbalance
between anabolic and catabolic processes due to the ded-
ifferentiation and apoptosis of chondrocytes and
increased synthesis of matrix degrading proteinases [1].
There is increasing evidence that inflammation plays an
active role in pathophysiology of osteoarthritis [2]. Proin-
flammatory cytokines are secreted from the inflamed syn-
ovium and from activated chondrocytes. Cytokines such
as interleukin 1 beta (IL-1B) and tumor necrosis factor
alpha (TNFa) upregulate numerous cytokines from
chondrocytes and synoviocytes as well as prostaglandin E,
and proteinases such as the matrix metalloproteinases
(MMPs) and aggrecanases [3-5]. The aggrecanses and the
matrix metalloproteinases are thought to mediate the
structural degradation of cartilage in OA [2].

Cytokines may also play an important role in driving the
primary symptom of the degenerative process of OA, pain.
Inflammatory cytokines such as [L-1p [6] and TNFa [7,8]
have been shown to modulate pain responses in animal
models and may be important in the initiation and per-
petuation of neuropathic pain. Pretreatment of rats before
spinal nerve ligation with the TNF antagonist etanercept
(Enbrel®) or cytokine inhibition by the p38 inhibitor SB-
203580 demonstrated similar degrees of inhibition of
mechanically induced allodynia [9]. SB 203580 was also
shown to attenuate IL-1 induced thermal hyperalgesia in
rats when administered intrathecally [10]. These data sug-
gest that cytokine inhibition may be useful for treating the
pain associated with OA.

Monoclonal anti-TNF therapies such as infliximab (Rem-
icade®) and adalimumab (Humira®), the TNF receptor
fusion protein etanercept (Enbrel®), and the soluble IL-1
receptor anakinra (Kineret®) have proven to be effective
for the treatment of a number of inflammatory diseases
including rheumatoid arthritis and inflammatory bowel
disease [11-16]. However, these biological cytokine inhib-
itors have not been widely evaluated in clinical trials for
OA due to a potentially poor risk to benefit ratio and the
fact that these drugs are very expensive and need to be
administered parenterally.

One way to approach cytokine inhibition is with low
molecular weight orally active inhibitors that block
cytokine signaling pathways such as the p38 MAPK path-
way [17]. The MAPKs operate as a series of kinase modules
beginning with the MAPK kinase kinases (MKKKs), which
phosphorylate MAPK kinases (MKKs), which ultimately
phosphorylate MAP kinases (MAPK) [1]. There are 3
MAPK families, the extracellular-regulated protein kinases
(ERK), the c-Jun NH2-terminal kinase (JNK) and p38
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[17]. The p38 family has four members: a and B which are
75% homologous and y and & that are more distantly
related [17]. P38 can upregulate cytokine production by
several mechanisms such as direct phosphorylation of
transcription factors such as AP-1 [18], or by stabilization
and increased translation of mRNAs containing 3'
untranslated region AU-rich elements (AREs) by phos-
phorylation of ARE binding proteins [18].

Small molecule p38 MAPK inhibitors have been demon-
strated to attenuate the synthesis of inflammatory
cytokines and MMPs [17]. SB 203580 [19-21] and VX-745
[22] are both potent inhibitors of p38a and B but not y or
3. The specificity of a number of widely used p38 inhibi-
tors has been more completely described recently versus
large panels of kinases [23,24]. SB-203580 has good selec-
tivity for p38a and B over the majority of kinases in a
panel of over 300 kinases but does inhibit some MAPKs
such as JNK 3 with an IC,, of about 100 nM [23,24]. VX-
745 is more specific but does inhibit some tyrosine
kinases with IC;,s 10-100 fold higher than for p38
[23,24].

Numerous p38 inhibitors have been evaluated in animal
models of rheumatoid arthritis [25,26] but little work has
been done in experimental models of OA. One study has
demonstrated a significant reduction in cartilage destruc-
tion and osteophyte formation in rabbits receiving an
anterior cruciate ligament transection treated with the
MEK-1/2 inhibitor PD 198306 [27]. The present study
describes the effect of two well known p38 inhibitors on
cartilage degradation in the iodoacetate model of joint
degeneration and inhibition of hyperalgesia in the Har-
graeves model. These data suggest that p38 inhibitors may
be beneficial in the treatment of both joint degeneration
and pain associated with OA.

Materials and methods

P38 kinase inhibitors

The p38 kinase inhibitors SB 203580 and VX-745 were
synthesized by the chemistry department at Procter &
Gamble Pharmaceuticals. The structures of the synthe-
sized compounds were verified by nuclear magnetic reso-
nance, mass spectroscopy and elemental analysis. The
purity of the compounds was > 99% as determined by
high performance liquid chromatography.

Kinase assay procedure

P38 kinase (Upstate Biotechnology, Charlottesville, VA)
was assayed in triplicate in a kinase buffer containing 25
mM HEPES, 25 mM B-glycerophosphate, 25 mM MgCl,,
0.1 mM Na;VO,, 2 mM DTT, and 50 uM ATP, in the pres-
ence or absence of various concentrations of inhibitor
(6.4, 16, 40, 100 or 250 nM) in 96-well microtiter plates.
The substrate ATF2 was used at 50 ng/reaction (coated
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onto plates by overnight incubation at 4°C). The reaction
was carried out at 37°C for 1 h. Phosphorylated ATF2 was
detected using a phosphoATF2 (Thr71) specific primary
antibody (Cell Signaling) that was then followed by ALP-
conjugated goat anti-rabbit IgG (Jackson Immune
Research). The OD was taken at 405 nm with a reference
at 490 nm.

TNFa ELISA on culture supernatants

Duplicate cultures of human monocytic cells (THP-1)
cells (2.0 x 10°/well) were incubated for 15 min in the
presence or absence of various concentrations of inhibitor
(8, 40, 125, 200, 500, 1000 or 2000 nM in RPMI-1640
with 2 mM glutamine, 10 mM HEPES, 1 mM sodium
pyruvate, 10% fetal calf serum, and 0.05 mM 2-B-mercap-
toethanol) before the stimulation of cytokine release by
the addition of lipopolysaccharide (LPS, 1 pg/ml, E. coli
055:B5, Sigma/Aldrich, St Louis, MO, < 3% protein impu-
rities by Lowry assay). The amount of TNF-a released was
measured 4 h later using an ELISA (R&D Systems, Minne-
apolis, MN). The viability of the cells after the 4 h incuba-
tion was measured using the CellTiter96 Aqueous non
radioactive cell proliferation assay (Promega Co., Madi-
son, WI). The CellTiter96 Aqueous non radioactive cell
proliferation assay measures cellular dehydrogenase activ-
ity as a surrogate of cellular viability by assaying the reduc-
tion of the tetrazolium compound (3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium to formazan which is
detected by a spectrophotometer at 490 nM. The viability
of the THP-1 cells was > 95%.

Inhibition of TNF-« and IL-1-£ release from LPS-
stimulated human peripheral blood mononuclear cells
(PBMCs)

Human PBMCs from 3 healthy volunteers were isolated
from 60 ml of heparinized human blood by gradient cen-
trifugation at 400 x G for 35 min at 25°C on Ficoll-
Hypaque gradients (Sigma Chemical Co, St Louis, MO).
The mononuclear cells were collected from the gradient,
were washed 3 times by centrifugation in Hanks balanced
salt solution, counted in a hemocytometer and resus-
pended in RPMI 1640 medium (Gibco, Grand Island,
N.Y.) containing 1% ITS supplement (insulin, transferrin,
selenous acid, bovine serum albumin and linoleic acid).
Duplicate cultures of human PBMCs (2.0 x 105/well) were
incubated for 15 minutes in the presence or absence of
various concentrations of inhibitor (16, 80, 400 or 2000
nM) in the RPMI 1640 medium described above before
the stimulation of cytokine release by the addition of LPS
(1 pg/ml). The amount of TNF-o and IL-1f released was
measured 18 h later by ELISA (R&D Systems, Minneapo-
lis, MN). The viability of the human PBMCs was > 90%.
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Animals

Sprague-Dawley male rats weighing 220-230 grams (Har-
lan, Indianapolis, IN) were housed singly in wire cages in
sanitary ventilated animal rooms with controlled temper-
ature, humidity and regular light cycles. Rodent chow
(Ralston-Purina, Richmond, IN) and water were available
ad libitum. Animals were acclimated for at least one week
before use.

All animal studies described in this report were conducted
in compliance with the US Animal Welfare Act, the rules
and regulations of the State of Ohio Departments of
Health, and in accordance with the Procter& Gamble
company policy of research involving animals with strict
oversight for care and welfare. For details of the policy
please contact the Procter & Gamble Company.

Induction of iodoacetate-induced arthritis

Arthritis was induced by a single intraarticular injection of
iodoacetate into the knee joint of rats anesthetized using
(3:1) CO,/O,. A 10 mg/ml concentration of monoso-
dium iodoacetate (MIA) (Aldrich Chemical, Milwaukee,
WI) was prepared using injectable saline as the vehicle.
After appropriate anesthesia each rat was positioned on its
back and the left leg was flexed 90 degrees at the knee. The
patellar ligament was palpated below the patella and the
injection was made into this region. Each rat received
0.025 ml intra-articular injection into the left knee using
a glass gas tight syringe with a 27 gauge 1/2 inch needle.
Care was taken not to advance the needle in too far into
the cruciate ligaments.

After injection of iodoacetate rats were treated orally b.i.d.
with either vehicle (0.5% carboxymethylcellulose/0.5%
Tween 20), VX 745 (50 mg/kg) or SB203580 (5, 10, 25 or
50 mg/kg) as a suspension in 0.5% carboxymethylcellu-
lose/0.5% Tween 20 for 3 weeks. There were 15 rats in
each treatment group. Upon termination of the study (3
weeks) the left knees of the euthanized animals were dis-
articulated and the tibial plateau imaged using an Opti-
mas image analyzer. The tibial plateau was used for image
analysis because it provided a relatively flat surface com-
pared with the femoral condyles, allowing the image anal-
ysis camera to focus on the entire cartilage surface. The
severity of damage in the magnified images was assessed
by three independent observers in a blinded manner
using a scale of increasing severity (0 = normal; 4 = maxi-
mum severity) as described previously [28].

Hargraeve's model of hyperalgesia

Sprague-Dawley male rats weighting 100-150 grams were
housed two per shoebox cage in sanitary, ventilated ani-
mal rooms with controlled temperature, humidity and
regular light cycles were used. Rodent chow and water
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were allowed ad libitum. Animals were acclimated for one
week before use.

On the first day of the study, each animal was acclimated
to test equipment and thermal hyperalgesia was deter-
mined using the Hargreaves Plantar Device (infrared radi-
ant heat source), to establish baseline paw withdrawal
latency (PWL) values. The baseline PWL values were cal-
culated as the mean of 2 pre-dose values. Animals were
fasted overnight, prior to dosing. The following day ani-
mals were orally dosed (15 rats per group) with vehicle
(0.5%  carboxymethylcellulose/0.5% Tween  80),
indomethacin (positive control 10 mg/ml) or test com-
pound (VX-745 or SB-203580 at 3, 10 or 30 mg/kg).
Thirty minutes after dosing, each animal was anesthetized
using CO,/0, (3:1) and received an intra plantar injection
of 0.100 ml of a 1.2% solution (w/v) of Carrageenan Vis-
carin GP 109 and returned to his cage to recover. Four
hours post injection; the left hind limb of each rat was
assessed for the thermal hyperalgesia. The animals were
placed into the Hargreaves Plantar Device once again to
determine response to the heat stimulus. Three responses
were recorded and the final two were averaged to deter-
mine the response at the end of the study.

Statistical analysis

The change of paw withdrawal latency (PWL) for vehicle
and drug treatment groups in the Hargraeve's assay was
calculated. Statistical comparisons between treatment
groups were made using analysis of covariance
(ANCOVA). The percent reduction in iodoacetate induced
knee degeneration in treated rats was compared to vehicle
treated animals and was analyzed using the Cochran-
Mantel-Haenszel test.

Results

S$B-203580 and VX -745 are potent inhibitors of p38, TNF«
and IL-14in vitro

The in vitro potencies of SB-203580 and VX-745 for p38
and cytokine inhibition were evaluated in vitro before
testing in the rat iodoacetate model of cartilage degenera-
tion. Both SB-203580 and VX-745 were potent inhibitors
of p38 with ICyys of 136 + 64 nM (mean + S.D., n = 3) and
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35 + 14 nM (mean + S.D., n = 8), at 50 uM ATP concen-
trations respectively (Table 1). Similarly, SB-203580 and
VX-745 potently inhibited TNF release from LPS stimu-
lated human THP-1 cells with IC;,'s of 72 + 15 nM; (mean
+ S.D., n = 65) and 29 + 14 nM; (mean + S.D., n = 3)
respectively. TNF release from LPS stimulated human
peripheral blood mononuclear cells was inhibited with
IC508 16 + 6 nM and 14 + 8 nM, (mean + S.D., n = 3) for
SB-203580 and VX-745 and IL-1 was inhibited with IC;s
of 20 + 8 nM and 15 + 4 nM (mean + S.D., n = 3), respec-
tively (Table 1).

P38 inhibitors attenuate joint degeneration in the rat
iodoacetate model

The oral administration of SB-203580 or VX-745 (50 mg/
kg b.i.d.) to rats that had received a single injection of
sodium iodoacetate into the left knee joint resulted in sta-
tistically significant inhibition of knee degeneration of
45% and 31% respectively, compared to vehicle treated
control animals (Figure 1). SB-230580 was further evalu-
ated in the rat iodoacetate model in a dose response exper-
iment. SB-203580 administered orally inhibited
iodoacetate induced joint degeneration in the rat by 30,
25, 12 and 8% at 50, 25, 10 and 5 mg/kg compared to
vehicle treated animals (Figure 2).

P38 inhibitors attenuate hyperalgesia in rats

The p38 inhibitors were evaluated for their ability to
inhibit a hyperalgesic response in rats using the Har-
graeves model [29]. Rats were given an oral dose of vehi-
cle, SB-203580 or VX-745 and 30 minutes later one paw
of each rat received an intraplantar injection of carra-
geenan. The time to paw withdrawal to an infrared heat
source was measured four hours later. Both SB-203580
(Table 2) and VX-745 (Table 3) significantly increased the
time to paw withdrawal compared to vehicle treated ani-
mals in a dose related manner when administered orally
at 30, 10 and 3 mg/kg.

Discussion

The degeneration of cartilage that occurs during osteoar-
thritis is the result of biochemical and mechanical factors.
Proinflammatory cytokines play a major role in inducing

Table I: In vitro inhibitory effects of SB-203580 and VX-745 on p38 and cytokine release

ICsg (NM)

Compound P3802 TNFob (THP-1 cells) TNFo< (PBMC) IL-1B< (PBMC)

$B-203580 136 + 64 72+ 15 166 20+8
VX-745 35+ 14 29 + 14 14+8 I5 + 4

aHuman p38a kinase was assayed using ATF2.

bTNFa release from the human monocytic cell line THP-1 was measured by ELISA 4 h after stimulation with LPS.
¢TNFo and IL-1f release from human peripheral blood mononuclear cells was measured by ELISA 16 h after stimulation with LPS. All data are

expressed as the mean * S.D.
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The p38 inhibitors SB-203580 and VX-745 signifi-
cantly inhibited the severity of iodoacetate-induced
knee degeneration in rats. The severity of knee degener-
ation in rats injected with 0.25 mg of iodoacetate was evalu-
ated 3 weeks after treatment with either vehicle (0.5%
carboxymethylcellulose/0.5% Tween 20), 50 mg/kg bid of SB-
203580 or VX-745 orally. The data are expressed as the
mean * S.E.M. from |5 rats per treatment group. * denotes P
< 0.05.

proteinases that are capable of degrading the aggrecan and
collagen components of cartilage [2,30]. Cytokines such
as IL-1f have also been shown to inhibit cartilage matrix
synthesis [31,32]. The result is an imbalance favoring
catabolism over anabolism and a net loss of cartilage
matrix. In addition, inflammatory cytokines such as IL-1
[6] and TNFa [7,8] have been shown to modulate pain
responses in animal models. Therefore, the inhibition of
proinflammatory cytokines may provide an important
therapeutic approach for the treatment of OA.

Clinical trial data on cytokine inhibitors for the treatment
of OA is limited. Diacerein, is a compound that inhibits
IL-1B production in vitro [33,34] and has been evaluated
in several clinical trials for the treatment of OA. Diacerein
has been shown to significantly decrease OA symptoms
[35,36] and to have structure modifying effects [37]. A 3
month pilot study of the TNF antagonist adalimumab in
12 patients with erosive OA did not significantly improve
the signs and symptoms of the disease [38] but this study
was uncontrolled, small and of short duration.

MAPKs such as p38 have been widely pursued targets for
the inhibition of cytokines for the treatment of inflamma-
tory diseases [39]. Although p38 inhibitors have been
extensively studied in animal models inflammatory
arthritis [25,26] there has been little work in models of
osteoarthritis. In the present study we have demonstrated
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Figure 2

SB-203580 inhibited the severity of iodoacetate-
induced knee degeneration in rats in a dose related
manner. The severity of knee degeneration in rats injected
with 0.25 mg of iodoacetate was evaluated 3 weeks after
treatment with vehicle or various doses of SB-203580. The
data are expressed as the mean + S.E.M. from |5 rats per
treatment group. * denotes P < 0.05.

that the p38 inhibitors SB203580 and VX-745 inhibit
joint degeneration in an animal model of osteoarthritis
and are analgesic in an inflammatory pain model. The
inhibitory effect of the p38 inhibitors on joint degenera-
tion in the iodoacetate model in the present study is in the
range of the inhibitory effect of MMP inhibitors tested in
this model [28]. Although the effects of p38 inhibitor in
OA models has not been previously reported the inter-
leukin converting enzyme inhibitor pralnacasan was
shown to reduce joint damage in a surgically induced
model and a spontaneous model of OA in mice [40] dem-
onstrating a benefit of cytokine inhibition. Similarly,
intra-articular injection of IL-1RA attenuated the develop-
ment of cartilage lesions and metalloproteinase expres-
sion in canine models of OA [41]. These animal studies
demonstrate that some of the inflammatory mediators
affected by p38 play an important role in the cartilage
degeneration observed in a number of different animal
models of OA. However, it is difficult to translate the
effects observed in these animal models into a clinical
benefit in human OA as there are currently no approved
disease modifying drugs for the treatment of OA.

A number of protein kinases including the MAPKs have
been implicated in the induction and maintenance of
pain sensitization. P38 is activated in spinal microglia and
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Table 2: Inhibitory effect of SB-203580 on hyperalgesia in the Hargraeves model

COMPOUND PAW WITHDRAWAL TIME PRE-DRUG TREATMENT  PAW WITHDRAWAL TIME POST-DRUG TREATMENT
(Seconds) (Seconds)
Vehicle 10.7 £ 0.6 80108
Indomethacin (10 mg/kg) 1.1 £0.6 14.5 + 0.6*
SB-203580 (30 mg/kg) 10.8 + 0.9 122 + 1.2%
SB-203580 (10 mg/kg) I1.1+£06 11.8 + |.4%
SB-203580 (3 mg/kg) 120+ 0.7 10.9 + |.2%

The data are presented as the time for paw withdrawal from the heat source in seconds and are the mean + S.E.M. from 10 rats per treatment
group. The asterisk denotes a statistically significant difference (p < 0.05) between the vehicle and drug treatment groups.

contributes to the development and maintenance of neu-
ropathic pain by inducing the synthesis of inflammatory
cytokines and other neuroactive molecules [42]. Adminis-
tration of the p38 inhibitor SB203580 intrathecally pre-
vents spinal nerve ligation-induced mechanical allodynia
[43]. The p38 inhibitor R-130823 has been reported to
have an analgesic effect in chronic pain in the rat adjuvant
arthritis model [44]. This effect may involve the bradyki-
nin B1 receptor as a p38 has been shown to mediate
hyperalgesia via the bradykinin B1 receptor in adjuvant
induced arthritis [45]. These data support the use of p38
inhibition to directly affect the pain of osteoarthritis.

Conclusion

In the present study, p38 inhibitors had a therapeutic ben-
efit in both models of joint degeneration and in hyperal-
gesia. These data suggest that p38 inhibitors may be useful
for the treatment of both joint degeneration and pain
associated with OA.
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